Paraburkholderia phytofirmans

Last updated

Paraburkholderia phytofirmans
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Pseudomonadota
Class: Betaproteobacteria
Order: Burkholderiales
Family: Burkholderiaceae
Genus: Paraburkholderia
Species:
P. phytofirmans
Binomial name
Paraburkholderia phytofirmans
(Sessitsch et al. 2005) Sawana et al. 2015 [1]
Synonyms
  • Burkholderia phytofirmansSessitsch et al. 2005

Paraburkholderia phytofirmans is a species of bacteria. [2] They have been reported to colonize endophytic tissues of hybrid spruce (Picea glauca x engelmannii) and lodgepole pine with a strong potential to perform biological nitrogen fixation and plant growth promotion. [3] [4] [5]

Related Research Articles

Endophyte

An endophyte is an endosymbiont, often a bacterium or fungus, that lives within a plant for at least part of its life cycle without causing apparent disease. Endophytes are ubiquitous and have been found in all species of plants studied to date; however, most of the endophyte/plant relationships are not well understood. Some endophytes may enhance host growth, nutrient acquisition and improve the plant's ability to tolerate abiotic stresses, such as drought, salinity and decrease biotic stresses by enhancing plant resistance to insects, pathogens and herbivores.

Diazotrophs are bacteria and archaea that fix atmospheric nitrogen gas into a more usable form such as ammonia.

<i>Burkholderia</i> Genus of bacteria

Burkholderia is a genus of Pseudomonadota whose pathogenic members include the Burkholderia cepacia complex, which attacks humans and Burkholderia mallei, responsible for glanders, a disease that occurs mostly in horses and related animals; Burkholderia pseudomallei, causative agent of melioidosis; and Burkholderia cepacia, an important pathogen of pulmonary infections in people with cystic fibrosis (CF). Burkholderia species is also found marine environment. S.I. Paul et al. (2021) isolated and characterized Burkholderia cepacia from marine sponges of the Saint Martin's Island of the Bay of Bengal, Bangladesh.

<i>Paenibacillus</i> Genus of bacteria

Paenibacillus is a genus of facultative anaerobic, endospore-forming bacteria, originally included within the genus Bacillus and then reclassified as a separate genus in 1993. Bacteria belonging to this genus have been detected in a variety of environments, such as: soil, water, rhizosphere, vegetable matter, forage and insect larvae, as well as clinical samples. The name reflects: Latin paene means almost, so the paenibacilli are literally "almost bacilli". The genus includes P. larvae, which causes American foulbrood in honeybees, P. polymyxa, which is capable of fixing nitrogen, so is used in agriculture and horticulture, the Paenibacillus sp. JDR-2 which is a rich source of chemical agents for biotechnology applications, and pattern-forming strains such as P. vortex and P. dendritiformis discovered in the early 90s, which develop complex colonies with intricate architectures as shown in the pictures:

Soil acidification is the buildup of hydrogen cations, which reduces the soil pH. Chemically, this happens when a proton donor gets added to the soil. The donor can be an acid, such as nitric acid, sulfuric acid, or carbonic acid. It can also be a compound such as aluminium sulfate, which reacts in the soil to release protons. Acidification also occurs when base cations such as calcium, magnesium, potassium and sodium are leached from the soil.

Paenibacillus polymyxa, also known as Bacillus polymyxa, is a Gram-positive bacterium capable of fixing nitrogen. It is found in soil, plant tissues, marine sediments and hot springs. It may have a role in forest ecosystems and potential future applications as a biofertilizer and biocontrol agent in agriculture.

Pseudomonas lini is a fluorescent, Gram-negative, rod-shaped bacterium isolated from rhizospheric soil in France. The type strain is CFBP 5737, though there are also eight other strains known. This bacterium has also been isolated from endophytic tissues of lodgepole pine trees growing on gravel mining sites with potential to perform biological nitrogen fixation and plant growth promotion.

Pseudomonas migulae is a fluorescent, Gram-negative, rod-shaped bacterium isolated from natural mineral waters in France. This bacterium has also been isolated from endophytic tissues of lodgepole pine trees growing on gravel mining sites with potential to perform biological nitrogen fixation and plant growth promotion. Based on 16S rRNA analysis, P. migulae has been placed in the P. fluorescens group.

Paraburkholderia graminis is a species of bacteria isolated from agricultural soils in France and Australia.

Paraburkholderia kururiensis is a species of bacteria.

Paraburkholderia phymatum is a species of bacteria that is capable of symbiotic nitrogen fixation with the legumes Machaerium lunatum and Mimosa pudica. Recently, the genome was sequenced. It consists of two chromosomes, a megaplasmid, and a plasmid hosting the symbiotic functions.

Paraburkholderia sacchari is a species of bacteria in the phylum Pseudomonadota. It was isolated in the 1990s from sugarcane crop soil, and later identified as a new bacterial species, originally named as Burkholderia sacchari. Paraburkholderia sacchari was found to be capable of creating and accumulating polyhydroxyalkanoates (PHA) by incorporating different monomers. This strain was subject of a number of genetic and bioproccess engineering studies conducted worldwide aiming to establish PHA production from different substrates, especially using agro-industrial byproducts.

Caballeronia sordidicola is a species of bacteria which has been reported to perform biological nitrogen fixation and promote plant growth

Paraburkholderia tuberum is a species of bacteria that is capable of symbiotic nitrogen fixation with the legume Aspalathus carnosa.

<i>Vangueria</i> Genus of flowering plants

Vangueria is a genus of flowering plants in the family Rubiaceae. The genus is named for Voa vanguer, as V. madagascariensis is known in Malagasy.

Paraburkholderia heleia is a gram-negative, nitrogen-fixing, aerobic, non-spore-forming, rod-shaped bacterium from the genus Paraburkholderia and the family Burkholderiaceae which was isolated from the Chinese water chestnut Eleocharis dulcis in acid sulfate soil areas of Vietnam. Colonies of Burkholderia heleia are pale yellow.

Paraburkholderia denitrificans is a gram-negative, bacterium from the genus Paraburkholderia and the family Burkholderiaceae which was isolated from wet forest soil on the island of Liancourt Rocks. Paraburkholderia denitrificans has the ability to reduced nitrate to nitrogen gas.

Caballeronia udeis is a bacterium from the genus Caballeronia and family Burkholderiaceae which has been reported to perform biological nitrogen fixation and promote plant growth

Paraburkholderia is a genus of Pseudomonadota that are gram negative, slightly curved rods that are motile by means of flagella. They have been reported to colonize endophytic tissues of hybrid spruce and lodgepole pine with a strong potential to perform biological nitrogen fixation and plant growth promotion. Unlike Burkholderia species, Paraburkholderia members are not commonly associated with human infection. Paraburkholderia members form a monophyletic clade within the Burkholderiaceae family, which is what prompted their distinction as a genus independent from Burkholderia species, in combination with the finding of robust conserved signature indels which are unique to Paraburkholderia species, and are lacking in members of the genus Burkholderia. These CSIs distinguish the genus from all other bacteria. Additionally, the CSIs that were found to be shared by Burkholderia species are absent in Paraburkholderia, providing evidence of separate lineages.

Caballeronia is a genus of bacteria from the family of Burkholderiaceae which has been reported to perform biological nitrogen fixation and promote plant growth

References

  1. Sawana A, Adeolu M, Gupta RS (2014). "Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species". Frontiers in Genetics. 5: 429. doi: 10.3389/fgene.2014.00429 . PMC   4271702 . PMID   25566316.
  2. Burkholderia J.P. Euzéby: List of Prokaryotic names with Standing in Nomenclature
  3. Puri A, Padda KP, Chanway CP (2020-01-01). "Can naturally-occurring endophytic nitrogen-fixing bacteria of hybrid white spruce sustain boreal forest tree growth on extremely nutrient-poor soils?". Soil Biology and Biochemistry. 140: 107642. doi: 10.1016/j.soilbio.2019.107642 . ISSN   0038-0717.
  4. Puri A, Padda KP, Chanway CP (2018-12-15). "Evidence of endophytic diazotrophic bacteria in lodgepole pine and hybrid white spruce trees growing in soils with different nutrient statuses in the West Chilcotin region of British Columbia, Canada". Forest Ecology and Management. 430: 558–565. doi:10.1016/j.foreco.2018.08.049. ISSN   0378-1127.
  5. Puri A, Padda KP, Chanway CP (2020-08-26). "Sustaining the growth of Pinaceae trees under nutrient-limited edaphic conditions via plant-beneficial bacteria". PLOS ONE. 15 (8): e0238055. Bibcode:2020PLoSO..1538055P. doi: 10.1371/journal.pone.0238055 . PMC   7449467 . PMID   32845898.