Paroxysmal kinesigenic choreoathetosis

Last updated
Paroxysmal kinesigenic choreoathetosis
Other namesFamilial PKD
Autosomal dominant - en.svg
Paroxysmal kinesigenic choreoathetosis is inherited in an autosomal dominant manner
Specialty Neurology   OOjs UI icon edit-ltr-progressive.svg

Paroxysmal kinesigenic choreoathetosis (PKC) also called paroxysmal kinesigenic dyskinesia (PKD) is a rare hyperkinetic movement disorder characterized by attacks of involuntary movements, which are triggered by sudden voluntary movements. The number of attacks can increase during puberty and decrease in a person's 20s to 30s. Involuntary movements can take many forms such as ballism, chorea or dystonia and usually only affect one side of the body or one limb in particular.

Contents

There are two types of PKD, primary and secondary. Primary PKD can be further broken down into familial and sporadic. Familial PKD, which means the individual has a family history of the disorder, is more common, but sporadic cases are also seen. [1] Secondary PKD can be caused by many other medical conditions such as multiple sclerosis (MS), stroke, pseudohypoparathyroidism, [2] hypocalcemia, hypoglycemia, hyperglycemia, [1] central nervous system trauma, or peripheral nervous system trauma. [3] PKD has also been linked with infantile convulsions and choreoathetosis (ICCA) syndrome, in which patients have afebrile seizures during infancy (benign familial infantile epilepsy) and then develop paroxysmal choreoathetosis later in life. [4] This phenomenon is actually quite common, with about 42% of individuals with PKD reporting a history of afebrile seizures as a child. [4]

PKD affects about 1 in 150,000 people. [5] It accounts for 86.8% of all the types of paroxysmal dyskinesias [6] and occurs more often in males than females.

Genetics

Paroxysmal kinesigenic dyskinesias are often inherited in an autosomal dominant fashion and several genes have now been identified where mutations can cause this disease. The genes typically code for proteins known to be involved in synaptic transmission, ion channels or ion transporters. [7] The first gene to be identified was the PRRT2 gene on chromosome 16, found in 2011 to be the cause of the disease in some patients. [8] The mutations in this gene included a nonsense mutation identified in the genome of one family and an insertion mutation identified in the genome of another family. [9] Researchers found PRRT2 mutations in 10 of 29 sporadic cases affected with PKD, thus suggests PRRT2 is the gene mutated in a subset of PKD and PKD is genetically heterogeneous. [10] Later reports have identified the genes SCN8A , CHRNA4 , and SLC16A2 as further causes of PKD. [7]

Pathophysiology

The pathophysiology of PKD is not fully explained. A few mechanisms have been suggested thus far:

  1. GABA dysregulation
  2. Abnormal breakdown of dopamine in the basal ganglia
  3. Dysfunction of the substantia nigra [11]
  4. A form of epilepsy [6]

Multiple methods are being used to study the potential brain abnormalities of individuals with PKD compared with “normal” individuals. These methods include SPECT studies, fMRI studies, and diffusion tensor imaging. The main problem with many of the studies concerned with the pathophysiology of the disorder is the small sample size. Because the studies normally only include about 7-10 patients with PKD, the results cannot be generalized to the entire population of patients. However, the studies do bring up possibilities for further study.

SPECT studies

In a study by Joo et al., the researchers performed interictal studies, meaning they scanned the patient's brain between attacks to find an underlying abnormality, rather than ictal scans, which look at the abnormalities that present themselves during an attack. [11] The researchers found interictally decreased cerebral blood flow in the posterior parts of the bilateral caudate nucleus. [11] However, the literature does state that although this could be a cause of PKD, it could also be a result of PKD. [11] Another SPECT study showed an increase in the cerebral blood flow in the left posterior thalamus in a PKD patient during an attack. [12] The researchers also subtracted the ictal from the postictal scans, and saw increased blood flow in the thalamus. They ultimately suggested that hyperactive blood flow in this area could be causing the pathophysiology of PKD. This study, however, was only performed on one patient, and would need to be replicated many more times in order to be generalized to the population of PKD patients. Other SPECT studies have been cited showing hyperactivity in the basal ganglia. [13]

fMRI studies

In a study by Zhou et al., [14] the researchers performed fMRI studies on PKD patients, and analyzed the differences between the amplitude low frequency fluctuations (ALFF) of the patients. They found that the left postcentral gyrus and the bilateral putamen had increased ALFF in PKD patients. [14] The researchers concluded that the hyperactivity in these regions suggested that there is a dysfunction in the basal ganglia-thalamo-cortical circuit in PKD. This circuit is part of the motor control circuit in the brain, making it a reasonable place for abnormality in a movement disorder, but again, researchers are still unsure of the role these differences they found play in the disease pathology.

Diffusion tensor imaging

Diffusion tensor imaging (DTI) displays physical alterations in the brain that may not be seen on regular MRI. [13] In one study researchers found that some of the patients had abnormalities in their thalamus. However, this does not prove that all patients have abnormalities in their thalamus. Other cases are cited, including a patient who developed a similar paroxysmal dyskinesia after a thalamic infarction, [13] implicating that an abnormality in the thalamus of individuals could contribute to PKD. It is not fully known, however, what role a thalamic abnormality plays in the disease pathophysiology.

Diagnosis

Paroxysmal kinesigenic dyskinesia is diagnosed using a strict set of guidelines. These criteria were studied and confirmed by Bruno et al. in a study of 121 individuals with PKD. [1] The age at onset is between 1 and 20 years old. The attacks of involuntary movements last less than one minute and have a known trigger, usually a sudden voluntary movement. For example, if a PKD patient stands up or begins walking after being sedentary for a period of time, or a person goes from a walk to a run, it can trigger an attack. Persons with PKD do not lose consciousness during attacks and have a full memory of the entire attack. Lastly, people with the disorder have a good response to medication and are usually prescribed anticonvulsants. The study also found that patients with familial PKD exhibit symptoms that follow the diagnostic criteria closely, while sporadic PKD individuals may deviate slightly. [3] Prior to criteria for diagnosis being set out, many patients with PKD were often diagnosed with some form of epilepsy. Many patients also experience an aura, similar to those experienced with epilepsy, preceding their attacks. Some patients describe it as a tingling sensation in the affected limb or “butterflies in their stomach.” Some individuals also have precipitants, such as stress and anxiety, that make it more likely for attacks to occur.

The above diagnostic criteria also set PKD apart from the other paroxysmal dyskinesias, which include paroxysmal nonkinesigenic dyskinesia (PNKD) and paroxysmal exercise-induced dyskinesia (PED). While PKD attacks last less than one minute, PNKD attacks last a few minutes to a few hours, and as the name suggests, the attacks do not occur because of a sudden voluntary movement like PKD. [3] Additionally, PKD can almost always be managed with drug therapy, while PNKD is not as responsive to anticonvulsants. PED, on the other hand, separates itself from PKD in that it is caused by prolonged exercise. Attacks from PED will cease soon after exercise is stopped. [3]

Treatment

Almost all patients respond positively to antiepileptic (anticonvulsant) drugs. One of the drugs most often mentioned in the literature is carbamazepine, and is the most widely used drug for treating PKD. Other anticonvulsants like valproic acid, phenytoin and clonazepam are common alternatives. Other categories of drugs have also been used, such as dopamine affecting drugs like Levodopa or Tetrabenazine. [3] Individuals with the disorder can also modify their behavior to lessen their attacks without the influence of drug therapy. For example, decreasing stress to avoid precipitants can help patients decrease the number of attacks. In addition, avoiding any sudden movements can also prevent an attack. In order to prevent an attack, some individuals use their auras as a warning, while others purposefully perform slow gestures or movements prior to a triggering movement. [6] Many, if not most, individuals end up growing out of the attacks with age, even without medicinal therapy, but some patients will go back to having attacks after a period of remission. [1] In regards to secondary PKD, treatment of the primary condition can lessen the PKD attacks in those individuals. [3]

History

A movement disorder similar to PKD was first mentioned in research literature in 1940 by Mount and Reback. They described a disorder consisting of attacks of involuntary movements but unlike PKD, the attacks lasted minutes to hours and were found to be caused by alcohol or caffeine intake. [15] They named it paroxysmal dystonic choreoathetosis. Kertesz later described another new movement disorder in 1967. He described a disorder that was induced by sudden movements, and responded to anticonvulsants, naming it paroxysmal kinesigenic choreoathetosis. Finally in a review in 1995 Demirkiran and Jankovic stated the disease should be called paroxysmal kinesigenic dyskinesia instead, pointing out that the attacks could manifest as any form of dyskinesia, not just choreoathetosis. [15]

See also

Related Research Articles

A convulsion is a medical condition where the body muscles contract and relax rapidly and repeatedly, resulting in uncontrolled shaking. Because epileptic seizures typically include convulsions, the term convulsion is often used as a synonym for seizure. However, not all epileptic seizures result in convulsions, and not all convulsions are caused by epileptic seizures. Non-epileptic convulsions have no relation with epilepsy, and are caused by non-epileptic seizures.

Advanced Sleep Phase Disorder (ASPD), also known as the advanced sleep-phase type (ASPT) of circadian rhythm sleep disorder, is a condition that is characterized by a recurrent pattern of early evening sleepiness and very early morning awakening. This sleep phase advancement can interfere with daily social and work schedules, and results in shortened sleep duration and excessive daytime sleepiness. The timing of sleep and melatonin levels are regulated by the body's central circadian clock, which is located in the suprachiasmatic nucleus in the hypothalamus.

<span class="mw-page-title-main">Tardive dyskinesia</span> Neurological disorder featuring involuntary, repetitive body movements

Tardive dyskinesia (TD) is a disorder that results in involuntary repetitive body movements, which may include grimacing, sticking out the tongue or smacking the lips. Additionally, there may be chorea or slow writhing movements. In about 20% of people with TD, the disorder interferes with daily functioning. If TD is present in the setting of a long-term drug therapy, reversibility can be determined primarily by severity of symptoms and how long symptoms have been present before the long-term drug has been stopped.

<span class="mw-page-title-main">Primary familial brain calcification</span> Indiana genetic disorder involving calcification of the basal ganglia

Primary familial brain calcification (PFBC), also known as familial idiopathic basal ganglia calcification (FIBGC) and Fahr's disease, is a rare, genetically dominant or recessive, inherited neurological disorder characterized by abnormal deposits of calcium in areas of the brain that control movement. Through the use of CT scans, calcifications are seen primarily in the basal ganglia and in other areas such as the cerebral cortex.

Neuroacanthocytosis is a label applied to several genetic neurological conditions in which the blood contains misshapen, spiculated red blood cells called acanthocytes.

Glucose transporter 1, also known as solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1), is a uniporter protein that in humans is encoded by the SLC2A1 gene. GLUT1 facilitates the transport of glucose across the plasma membranes of mammalian cells. This gene encodes a facilitative glucose transporter that is highly expressed in erythrocytes and endothelial cells, including cells of the blood–brain barrier. The encoded protein is found primarily in the cell membrane and on the cell surface, where it can also function as a receptor for human T-cell leukemia virus (HTLV) I and II. GLUT1 accounts for 2 percent of the protein in the plasma membrane of erythrocytes.

Alternating hemiplegia of childhood (AHC) is an ultra-rare neurological disorder named for the transient episodes, often referred to as "attacks", of hemiplegia that those with the condition experience. It typically presents before the age of 18 months. These hemiplegic attacks can cause anything from mild weakness to complete paralysis on one or both sides of the body, and they can vary greatly in duration. Attacks may also alternate from one side of the body to the other, or alternate between affecting one or both sides during a single attack. Besides hemiplegia, symptoms of the disorder include an extremely broad range of neurological and developmental impairments which are not well understood. Normally, hemiplegia and other associated symptoms cease completely with sleep, but they may recur upon waking.

Episodic ataxia (EA) is an autosomal dominant disorder characterized by sporadic bouts of ataxia with or without myokymia. There are seven types recognized but the majority are due to two recognized entities. Ataxia can be provoked by psychological stress or startle, or heavy exertion, including exercise. Symptoms can first appear in infancy. There are at least six loci for EA, of which 4 are known genes. Some patients with EA also have migraine or progressive cerebellar degenerative disorders, symptomatic of either familial hemiplegic migraine or spinocerebellar ataxia. Some patients respond to acetazolamide though others do not.

Paroxysmal nonkinesigenic dyskinesia (PNKD) is an episodic movement disorder first described by Mount and Reback in 1940 under the name "Familial paroxysmal choreoathetosis". It is a rare hereditary disease that affects various muscular and nervous systems in the body, passing to roughly fifty percent of the offspring.

<span class="mw-page-title-main">GLUT1 deficiency</span> Medical condition


GLUT1 deficiency syndrome, also known as GLUT1-DS, De Vivo disease or Glucose transporter type 1 deficiency syndrome, is an autosomal dominant genetic metabolic disorder associated with a deficiency of GLUT1, the protein that transports glucose across the blood brain barrier. Glucose Transporter Type 1 Deficiency Syndrome has an estimated birth incidence of 1 in 90,000 to 1 in 24,300. This birth incidence translates to an estimated prevalence of 3,000 to 7,000 in the U.S.

Paroxysmal extreme pain disorder originally named familial rectal pain syndrome, is a rare disorder whose most notable features are pain in the mandibular, ocular and rectal areas as well as flushing. PEPD often first manifests at the beginning of life, perhaps even in utero, with symptoms persisting throughout life. PEPD symptoms are reminiscent of primary erythromelalgia, as both result in flushing and episodic pain, though pain is typically present in the extremities for primary erythromelalgia. Both of these disorders have recently been shown to be allelic, both caused by mutations in the voltage-gated sodium channel NaV1.7 encoded by the gene SCN9A. A different mutation in the SCN9A ion channel causes congenital insensitivity to pain.

<span class="mw-page-title-main">PNKD</span> Protein-coding gene in the species Homo sapiens

PNKD is the abbreviation for a human neurological movement disorder paroxysmal nonkinesiogenic dyskinesia. Like many other human genetics disorders, PNKD also refers to the disease, the disease gene and the encoded protein. (PNKD) is a protein that in humans is encoded by the PNKD gene. Alternative splicing results in the transcription of three isoforms. The mouse ortholog is called brain protein 17 (Brp17).

The paroxysmal dyskinesias (PD) are a group of movement disorders characterized by attacks of hyperkinesia with intact consciousness. Paroxysmal dyskinesia is a rare disorder, however the number of individuals it affects remains unclear. There are three different subtypes of PD that include paroxysmal kinesigenic dyskinesia (PKD), paroxysmal nonkinesigenic dyskinesia (PNKD), and paroxysmal exercise-induced dyskinesia (PED). Other neurological diseases have similar symptoms to PD, such as epilepsy and Parkinson's. The different subtypes make accurate and quick diagnosis of PD challenging. Thus, PD is often under reported and misdiagnosed, making it difficult to accurately study its prevalence in human populations. Onset of PD is usually in late childhood to early adolescence. New drug regimens help treat symptoms of PD, but no cure for the disorder is known.

<span class="mw-page-title-main">Paroxysmal exercise-induced dystonia</span> Medical condition

Paroxysmal exercise-induced dystonia or PED is a rare neurological disorder characterized by sudden, transient, involuntary movements, often including repetitive twisting motions and painful posturing triggered by exercise or other physical exertion. PED is in the class of paroxysmal dyskinesia which are a group of rare movement disorders characterized by attacks of hyperkinesia with intact consciousness. The term paroxysmal indicates that the episodes are sudden and short lived and usually unpredicted, and return to normal is rapid. The number of reported cases of people with PED is very small leading to difficulty in studying and classifying this disease and most studies are limited to a very small number of test subjects.

Dyskinetic cerebral palsy (DCP) is a subtype of cerebral palsy (CP) and is characterized by impaired muscle tone regulation, coordination and movement control. Dystonia and choreoathetosis are the two most dominant movement disorders in patients with DCP.

<span class="mw-page-title-main">Infantile convulsions and choreoathetosis</span> Medical condition

Infantile convulsions and choreoathetosis (ICCA) syndrome is a neurological genetic disorder with an autosomal dominant mode of inheritance. It is characterized by the association of benign familial infantile epilepsy (BIFE) at age 3–12 months and later in life with paroxysmal kinesigenic choreoathetosis. The ICCA syndrome was first reported in 1997 in four French families from north-western France and provided the first genetic evidence for common mechanisms shared by benign infantile seizures and paroxysmal dyskinesia. The epileptic origin of PKC has long been a matter of debates and PD have been classified as reflex epilepsies. Indeed, attacks of PKC and epileptic seizures have several characteristics in common, they both are paroxysmal in presentation with a tendency to spontaneous remission, and a subset of PKC responds well to anticonvulsants. This genetic disease has been mapped to chromosome 16p-q12. More than 30 families with the clinical characteristics of ICCA syndrome have been described worldwide so far.

<span class="mw-page-title-main">PRRT2</span> Protein-coding gene in the species Homo sapiens

Proline-rich transmembrane protein 2 is a protein that in humans is encoded by the PRRT2 gene.

Benign familial infantile epilepsy (BFIE) is an epilepsy syndrome. Affected children, who have no other health or developmental problems, develop seizures during infancy. These seizures have focal origin within the brain but may then spread to become generalised seizures. The seizures may occur several times a day, often grouped in clusters over one to three days followed by a gap of one to three months. Treatment with anticonvulsant drugs is not necessary but they are often prescribed and are effective at controlling the seizures. This form of epilepsy resolves after one or two years, and appears to be completely benign. The EEG of these children, between seizures, is normal. The brain appears normal on MRI scan.

Benign hereditary chorea (BHC), also known as benign familial chorea, is a rare autosomal dominant neurogenetic syndrome. It typically presents itself in childhood with isolated chorea, with average to below average intelligence. Unlike other neurogenetic causes of chorea such as Huntington's disease, BHC is not progressive, and not associated with cognitive decline or psychiatric problems in the vast majority of cases.

Louis Ptáček is an American neurologist and professor who contributed greatly to the field of genetics and neuroscience. He was also an HHMI investigator from 1997 to 2018. His chief areas of research include the understanding of inherited Mendelian disorders and circadian rhythm genes. Currently, Ptáček is a neurology professor and a director of the Division of Neurogenetics in University of California, San Francisco, School of Medicine. His current investigations primarily focus on extensive clinical studies in families with hereditary disorders, which include identifying and characterizing the genes responsible for neurological variations.

References

  1. 1 2 3 4 Bruno, M. K.; Hallett, M.; Gwinn-Hardy, K.; Sorensen, B.; Considine, E.; Tucker, S.; Lynch, D. R.; Mathews, K. D.; Swoboda, K. J.; Harris, J.; Soong, B. W.; Ashizawa, T.; Jankovic, J.; Renner, D.; Fu, Y. H.; Ptacek, L. J. (2004). "Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: New diagnostic criteria". Neurology. 63 (12): 2280–2287. doi:10.1212/01.WNL.0000147298.05983.50. PMID   15623687. S2CID   20135988.
  2. Thomas, K. P.; Muthugovindan, D.; Singer, H. S. (2010). "Paroxysmal Kinesigenic Dyskinesias and Pseudohypo-parathyroidism Type Ib". Pediatric Neurology. 43 (1): 61–64. doi:10.1016/j.pediatrneurol.2010.03.012. PMID   20682207.
  3. 1 2 3 4 5 6 Mehta, S. H.; Morgan, J. C.; Sethi, K. D. (2009). "Paroxysmal dyskinesias". Current Treatment Options in Neurology. 11 (3): 170–178. doi:10.1007/s11940-009-0020-x. PMID   19364451. S2CID   21497234.
  4. 1 2 Weber, Y. G.; Lerche, H. (2009). "Genetics of paroxysmal dyskinesias". Current Neurology and Neuroscience Reports. 9 (3): 206–211. doi:10.1007/s11910-009-0031-8. PMID   19348709. S2CID   41672884.
  5. Khan, W. U.; Staios, G.; Rana, A. Q. (2010). "Paroxysmal kinesigenic dyskinesia in a mother and daughter". Acta Neurologica Belgica. 110 (2): 201–202. PMID   20873453.
  6. 1 2 3 Zhou, J. Q.; Zhou, L. M.; Fang, Z. Y.; Wang, Q.; Chen, Z. Y.; Yang, L. B.; Chen, S. D.; Cai, X. D. (2011). "Analyzing clinical and electrophysiological characteristics of Paroxysmal Dyskinesia". Journal of Research in Medical Sciences. 16 (1): 110–114. PMC   3063430 . PMID   21448393.
  7. 1 2 Papandreou A, Danti FR, Spaull R, Leuzzi V, Mctague A, Kurian MA (February 2020). "The expanding spectrum of movement disorders in genetic epilepsies". Developmental Medicine and Child Neurology. 62 (2): 178–191. doi:10.1111/dmcn.14407. PMID   31784983. S2CID   208498567.
  8. Chen, W. J.; Lin, Y.; Xiong, Z. Q.; Wei, W.; Ni, W.; Tan, G. H.; Guo, S. L.; He, J.; Chen, Y. F.; Zhang, Q. J.; Li, H. F.; Lin, Y.; Murong, S. X.; Xu, J.; Wang, N.; Wu, Z. Y. (2011). "Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia". Nature Genetics. 43 (12): 1252–1255. doi:10.1038/ng.1008. PMID   22101681. S2CID   16129198.
  9. Wang, J. -L.; Cao, L.; Li, X. -H.; Hu, Z. -M.; Li, J. -D.; Zhang, J. -G.; Liang, Y.; San-a; Li, N.; Chen, S. -Q.; Guo, J. -F.; Jiang, H.; Shen, L.; Zheng, L.; Mao, X.; Yan, W. -Q.; Zhou, Y.; Shi, Y. -T.; Ai, S. -X.; Dai, M. -Z.; Zhang, P.; Xia, K.; Chen, S. -D.; Tang, B. -S. (2011). "Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias". Brain. 134 (12): 3493–3501. doi:10.1093/brain/awr289. PMC   3235563 . PMID   22120146.
  10. Li J, Zhu X, Wang X et al. J Med Genet. 2012 Feb;49(2):76-8. Epub 2011 Nov 30. Targeted genomic sequencing identifies PRRT2 mutations as a cause of paroxysmal kinesigenic choreoathetosis.
  11. 1 2 3 4 Joo, E. Y.; Hong, S. B.; Tae, W. S.; Kim, J. H.; Han, S. J.; Seo, D. W.; Lee, K. H.; Kim, M. H.; Kim, S.; Lee, M. H.; Kim, B. T. (2005). "Perfusion abnormality of the caudate nucleus in patients with paroxysmal kinesigenic choreoathetosis". European Journal of Nuclear Medicine and Molecular Imaging. 32 (10): 1205–1209. doi:10.1007/s00259-005-1814-z. PMID   15948007. S2CID   22387438.
  12. Shirane, S.; Sasaki, M; Kogure, D; Matsuda, H; Hashimoto, T (2001). "Increased ictal perfusion of the thalamus in paroxysmal kinesigenic dyskinesia". Journal of Neurology, Neurosurgery & Psychiatry. 71 (3): 408–410. doi:10.1136/jnnp.71.3.408. PMC   1737540 . PMID   11511723.
  13. 1 2 3 Zhou, B.; Chen, Q.; Gong, Q.; Tang, H.; Zhou, D. (2009). "The thalamic ultrastructural abnormalities in paroxysmal kinesigenic choreoathetosis: A diffusion tensor imaging study". Journal of Neurology. 257 (3): 405–409. doi:10.1007/s00415-009-5334-9. PMID   20012544. S2CID   31426124.
  14. 1 2 Zhou, B.; Chen, Q.; Zhang, Q.; Chen, L.; Gong, Q.; Shang, H.; Tang, H.; Zhou, D. (2010). "Hyperactive putamen in patients with paroxysmal kinesigenic choreoathetosis: A resting-state functional magnetic resonance imaging study". Movement Disorders. 25 (9): 1226–1231. doi:10.1002/mds.22967. PMID   20629125. S2CID   5055481.
  15. 1 2 Bhatia, K. P. (2011). "Paroxysmal dyskinesias". Movement Disorders. 26 (6): 1157–1165. doi:10.1002/mds.23765. PMID   21626559. S2CID   27071469.