Passive heave compensation

Last updated

Passive heave compensation is a technique used to reduce the influence of waves upon lifting and drilling operations. [1] A simple passive heave compensator (PHC) is a soft spring which utilizes spring isolation to reduce transmissibility to less than 1. [2] PHC differs from AHC by not consuming external power.

Contents

Principle

The main principle in PHC is to store the energy from the external forces (waves) influencing the system and dissipate them or reapply them later. Shock absorbers or drill string compensators are simple forms of PHC, so simple that they are normally named heave compensators, while "passive" is used about more sophisticated hydraulic or mechanical systems.

A typical PHC device consists of a hydraulic cylinder and a gas accumulator. When the piston rod extends it will reduce the total gas volume and hence compress the gas that in turn increases the pressure acting upon the piston. The compression ratio is low to ensure low stiffness. A well designed PHC device can achieve efficiencies above 80 percent. [3]

Application

PHC is often used on offshore equipment that is at or linked to the seabed. Not requiring external energy, PHC may be designed as a fail-safe system reducing the wave impact on sub-sea operations. [4] PHC may be used along with active heave compensation to form a semi-active system. [5]

Calculation of PHC

Efficiency for a PHC used during offshore lifting operations

Sketch of system PHC sketch.png
Sketch of system

The PHC device is in this calculation connected to the crane hook. Newton's second law is used to describe the acceleration of the payload:

Where

- is the mass of the load underneath the PHC device
- is the added mass of the load underneath the PHC device
- is the acceleration of the mass of the load underneath the PHC device
- is the stiffness of the PHC device
- is the vertical position of the mass underneath the PHC device
- is the vessel motion amplitude
- is the angular wave frequency
- is time

Ignoring the transient solution, it is found that the ratio between the amplitude of the load and the wave amplitude is:

To simplify the expression, it is common to introduce as the systems natural frequency, defined as:

This leads to the following expression for the ratio:

The transmissibility is defined as:

Finally, the efficiency is defined as:

Calculating PHC stiffness

The stiffness of a PHC device is given by: [6]

Where

- is the gas pressure at equilibrium stroke
- is the piston area
- is the stroke length
- is the compression ratio
- is the adiabatic coefficient

The product corresponds to the submerged weight of the payload. As can be seen from the expression, low compression ratios and long stroke length give low stiffness.

Related Research Articles

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:

<span class="mw-page-title-main">Characteristic impedance</span> Property of an electrical circuit

The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. Alternatively, and equivalently, it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.

<span class="mw-page-title-main">Cutoff frequency</span> Frequency response boundary

In physics and electrical engineering, a cutoff frequency, corner frequency, or break frequency is a boundary in a system's frequency response at which energy flowing through the system begins to be reduced rather than passing through.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

<span class="mw-page-title-main">Resonance</span> Tendency to oscillate at certain frequencies

Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration that matches its natural frequency. When this happens, the object or system absorbs energy from the external force and starts vibrating with a larger amplitude. Resonance can occur in various systems, such as mechanical, electrical, or acoustic systems, and it is often desirable in certain applications, such as musical instruments or radio receivers. However, resonance can also be detrimental, leading to excessive vibrations or even structural failure in some cases.

<span class="mw-page-title-main">Standing wave</span> Wave that remains in a constant position

In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect to time, and the oscillations at different points throughout the wave are in phase. The locations at which the absolute value of the amplitude is minimum are called nodes, and the locations where the absolute value of the amplitude is maximum are called antinodes.

<span class="mw-page-title-main">Spring (device)</span> Elastic object that stores mechanical energy

A spring is a device consisting of an elastic but largely rigid material bent or molded into a form that can return into shape after being compressed or extended. Springs can store energy when compressed. In everyday use, the term most often refers to coil springs, but there are many different spring designs. Modern springs are typically manufactured from spring steel. An example of a non-metallic spring is the bow, made traditionally of flexible yew wood, which when drawn stores energy to propel an arrow.

<span class="mw-page-title-main">Normal mode</span> Pattern of oscillating motion in a system

A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. These fixed frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials and boundary conditions.

<span class="mw-page-title-main">Butterworth filter</span> Type of signal processing filter

The Butterworth filter is a type of signal processing filter designed to have a frequency response that is as flat as possible in the passband. It is also referred to as a maximally flat magnitude filter. It was first described in 1930 by the British engineer and physicist Stephen Butterworth in his paper entitled "On the Theory of Filter Amplifiers".

In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium.

In physical systems, damping is the loss of energy of an oscillating system by dissipation. Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. Examples of damping include viscous damping in a fluid, surface friction, radiation, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes. Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping.

<span class="mw-page-title-main">AC power</span> Power in alternating current systems

In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt.

In the study of differential equations, the Ritz method is a direct method to find an approximate solution for boundary value problems. The method is named after Walther Ritz. Some alternative formulations include the Rayleigh–Ritz method and the Ritz-Galerkin method.

<span class="mw-page-title-main">Love wave</span> Horizontally polarized surface waves

In elastodynamics, Love waves, named after Augustus Edward Hough Love, are horizontally polarized surface waves. The Love wave is a result of the interference of many shear waves (S-waves) guided by an elastic layer, which is welded to an elastic half space on one side while bordering a vacuum on the other side. In seismology, Love waves (also known as Q waves (Quer: German for lateral)) are surface seismic waves that cause horizontal shifting of the Earth during an earthquake. Augustus Edward Hough Love predicted the existence of Love waves mathematically in 1911. They form a distinct class, different from other types of seismic waves, such as P-waves and S-waves (both body waves), or Rayleigh waves (another type of surface wave). Love waves travel with a lower velocity than P- or S- waves, but faster than Rayleigh waves. These waves are observed only when there is a low velocity layer overlying a high velocity layer/ sub–layers.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

<span class="mw-page-title-main">Vibration</span> Mechanical oscillations about an equilibrium point

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely, or random if the oscillations can only be analysed statistically.

<span class="mw-page-title-main">Trochoidal wave</span> Exact solution of the Euler equations for periodic surface gravity waves

In fluid dynamics, a trochoidal wave or Gerstner wave is an exact solution of the Euler equations for periodic surface gravity waves. It describes a progressive wave of permanent form on the surface of an incompressible fluid of infinite depth. The free surface of this wave solution is an inverted (upside-down) trochoid – with sharper crests and flat troughs. This wave solution was discovered by Gerstner in 1802, and rediscovered independently by Rankine in 1863.

The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power. Furthermore, the process offers good range resolution because the half-power beam width of the compressed pulse is consistent with the system bandwidth.

IEC 61000-4-5 is an international standard by the International Electrotechnical Commission on surge immunity. In an electrical installation, disruptive surges can appear on power and data lines. Their sources include abrupt load switching and faults in the power system, as well as induced lightning transients from an indirect lightning strike. It necessitates the test of surge immunity in electrical or electronic equipment. IEC 61000-4-5 defines test set-up, procedures, and classification levels.

References

  1. Passive and Active heave Compensation, Albers, TU Delft
  2. Bob Wilde and Jake Ormond: Subsea Heave Compensators, Deep Offshore Technology 2009
  3. "The Engineers Guide". Safelink AS. Archived from the original on 2012-11-02. Retrieved 2012-11-17.
  4. "Passive Heave Compensation". Archived from the original on 2013-02-08. Retrieved 2012-12-17.
  5. "Passive Heave Compensation of Heavy Modules, Sten Magne Eng Jakobsen, 2008, University of Stavanger" (PDF). Archived from the original on 2024-01-16. Retrieved 2012-12-17.
  6. Peter Albers: Motion Control in Offshore and Dredging, Springer, 2010. ISBN   978-9048188024