Paul Brumer

Last updated
Paul W. Brumer
Born
Paul William Brumer
Alma mater Brooklyn College (BSc)
Harvard University (PhD)
Scientific career
Fields Chemistry
Institutions University of Toronto
Thesis Structure and Collision Complex Dynamics of Alkali Halide Dimers  (1972)
Doctoral advisor Martin Karplus
Website www.chemistry.utoronto.ca/people/directories/all-faculty/paul-brumer

Paul Brumer is a professor of chemistry at the University of Toronto, known for his work in theoretical chemical physics.

Contents

Early life and education

Brumer was born in the New York borough of Brooklyn. He graduated from Brooklyn College with a bachelor's degree in 1966. In 1972 he received a doctorate from Harvard University under the supervision of Martin Karplus. As a postdoctoral fellow, he worked with Raphael Levine and Alexander Dalgarno at the Harvard Center for Astrophysics, where he lectured on astronomy. [1]

Career

In 1975 he moved to the department of chemistry at the University of Toronto. In his early scientific work, Brumer dealt with different aspects of the classical and quantum mechanical description of the dynamics of chemical reactions. In addition to linking classic chaotic dynamics and statistical behavior in chemical reactions, he used theoretical methods to investigate the occurrence of quantum chaos with such reactions. He published his most widely cited work with Moshe Shapiro and co-workers on the theory of laser control of chemical reactions, also known as coherent control of chemical reactions. [1]

Honors and awards

In 1993 Brumer became an elected fellow of the American Physical Society for "the development of quantum and classical dynamics of isolated molecules and the coherent control of chemical reactions." [2] He was elected a fellow of the Royal Society of Canada in 1994. He received the Izaak Walton Killam Memorial Prize in 2000 for his work in chemical physics. [3]

Selected publications

Textbooks
Articles

Related Research Articles

Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics.

<span class="mw-page-title-main">Theoretical chemistry</span> Branch of chemistry

Theoretical chemistry is the branch of chemistry which develops theoretical generalizations that are part of the theoretical arsenal of modern chemistry: for example, the concepts of chemical bonding, chemical reaction, valence, the surface of potential energy, molecular orbitals, orbital interactions, and molecule activation.

Coherent control is a quantum mechanics-based method for controlling dynamic processes by light. The basic principle is to control quantum interference phenomena, typically by shaping the phase of laser pulses. The basic ideas have proliferated, finding vast application in spectroscopy, mass spectra, quantum information processing, laser cooling, ultracold physics and more.

<span class="mw-page-title-main">Martin Karplus</span> Austrian-American chemist (1930–2024)

Martin Karplus was an Austrian and American theoretical chemist. He was the Theodore William Richards Professor of Chemistry at Harvard University. He was also the director of the Biophysical Chemistry Laboratory, a joint laboratory between the French National Center for Scientific Research and the University of Strasbourg, France. Karplus received the 2013 Nobel Prize in Chemistry, together with Michael Levitt and Arieh Warshel, for "the development of multiscale models for complex chemical systems".

<span class="mw-page-title-main">Ronnie Kosloff</span>

Ronnie Kosloff is a professor of theoretical chemistry at the Institute of Chemistry and Fritz Haber Center for Molecular Dynamics, Hebrew University of Jerusalem, Israel.

<span class="mw-page-title-main">Arieh Warshel</span> Israeli chemist, biochemist and biophysicist (born 1940)

Arieh Warshel is an Israeli-American biochemist and biophysicist. He is a pioneer in computational studies on functional properties of biological molecules, Distinguished Professor of Chemistry and Biochemistry, and holds the Dana and David Dornsife Chair in Chemistry at the University of Southern California. He received the 2013 Nobel Prize in Chemistry, together with Michael Levitt and Martin Karplus for "the development of multiscale models for complex chemical systems".

<span class="mw-page-title-main">William Hughes Miller</span> American academic and scientist

William Hughes Miller is an American professor at the University of California, Berkeley and a leading researcher in the field of theoretical chemistry.

Paul Bruce Corkum is a Canadian physicist specializing in attosecond physics and laser science. He holds a joint University of Ottawa–NRC chair in attosecond photonics. He also holds academic positions at Texas A&M University and the University of New Mexico. Corkum is both a theorist and an experimentalist. He is known for developing the theory of attosecond physics.

Moshe Shapiro was a chemist and physicist at the University of British Columbia.

Photoelectron photoion coincidence spectroscopy (PEPICO) is a combination of photoionization mass spectrometry and photoelectron spectroscopy. It is largely based on the photoelectric effect. Free molecules from a gas-phase sample are ionized by incident vacuum ultraviolet (VUV) radiation. In the ensuing photoionization, a cation and a photoelectron are formed for each sample molecule. The mass of the photoion is determined by time-of-flight mass spectrometry, whereas, in current setups, photoelectrons are typically detected by velocity map imaging. Electron times-of-flight are three orders of magnitude smaller than those of ions, which allows electron detection to be used as a time stamp for the ionization event, starting the clock for the ion time-of-flight analysis. In contrast with pulsed experiments, such as REMPI, in which the light pulse must act as the time stamp, this allows to use continuous light sources, e.g. a discharge lamp or a synchrotron light source. No more than several ion–electron pairs are present simultaneously in the instrument, and the electron–ion pairs belonging to a single photoionization event can be identified and detected in delayed coincidence.

Path integral molecular dynamics (PIMD) is a method of incorporating quantum mechanics into molecular dynamics simulations using Feynman path integrals. In PIMD, one uses the Born–Oppenheimer approximation to separate the wavefunction into a nuclear part and an electronic part. The nuclei are treated quantum mechanically by mapping each quantum nucleus onto a classical system of several fictitious particles connected by springs governed by an effective Hamiltonian, which is derived from Feynman's path integral. The resulting classical system, although complex, can be solved relatively quickly. There are now a number of commonly used condensed matter computer simulation techniques that make use of the path integral formulation including centroid molecular dynamics (CMD), ring polymer molecular dynamics (RPMD), and the Feynman–Kleinert quasi-classical Wigner (FK–QCW) method. The same techniques are also used in path integral Monte Carlo (PIMC).

<span class="mw-page-title-main">Philip H. Bucksbaum</span> American atomic physicist

Philip H. Bucksbaum is an American atomic physicist, the Marguerite Blake Wilbur Professor in Natural Science in the Departments of Physics, Applied Physics, and Photon Science at Stanford University and the SLAC National Accelerator Laboratory. He also directs the Stanford PULSE Institute.

<span class="mw-page-title-main">James B. Anderson</span> American chemist and physicist (1935–2021)

James Bernhard Anderson was an American chemist and physicist. From 1995 to 2014 he was Evan Pugh Professor of Chemistry and Physics at the Pennsylvania State University. He specialized in Quantum Chemistry by Monte Carlo methods, molecular dynamics of reactive collisions, kinetics and mechanisms of gas phase reactions, and rare-event theory.

<span class="mw-page-title-main">Ali Alavi</span> British theoretical chemist

Ali Alavi FRS is a professor of theoretical chemistry in the Department of Chemistry at the University of Cambridge and a Director of the Max Planck Institute for Solid State Research in Stuttgart.

<span class="mw-page-title-main">Martin Quack</span> German physical chemist, spectroscopist

Martin Quack is a German physical chemist and spectroscopist; he is a professor at ETH Zürich.

<span class="mw-page-title-main">Bretislav Friedrich</span> American physicist

Bretislav Friedrich is a Research Group leader at the Department of Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft and Honorarprofessor at the Technische Universität in Berlin, Germany. He is globally recognized for his pioneering research surrounding interaction of molecules with and in electric, magnetic, and optical fields as well as on cold molecules. He was admitted to the Learned Society of the Czech Republic in 2011.

<span class="mw-page-title-main">Mixed quantum-classical dynamics</span> Computational chemistry methods to simulate non-adiabatic processes

Mixed quantum-classical (MQC) dynamics is a class of computational theoretical chemistry methods tailored to simulate non-adiabatic (NA) processes in molecular and supramolecular chemistry. Such methods are characterized by:

  1. Propagation of nuclear dynamics through classical trajectories;
  2. Propagation of the electrons through quantum methods;
  3. A feedback algorithm between the electronic and nuclear subsystems to recover nonadiabatic information.
<span class="mw-page-title-main">William H. Green</span> American chemical engineer (born 1963)

William H. Green Jr., is a Hoyt C. Hottel Professor of Chemical Engineering at the Massachusetts Institute of Technology, working in the field of chemical reaction engineering.

Tamar Seideman is the Dow Chemical Company Professor of Chemistry and Professor of Physics at Northwestern University. She specialises in coherence spectroscopies and coherent control in isolated molecules and dissipative media as well as in ultrafast nanoplasmonics, current-driven phenomena in nanoelectronics and mathematical models.

<span class="mw-page-title-main">Debabrata Goswami</span> Indian chemist

Debabrata Goswami FInstP FRSC, is an Indian chemist and the Prof. S. Sampath Chair Professor of Chemistry, at the Indian Institute of Technology Kanpur. He is also a professor of The Department of Chemistry and The Center for Lasers & Photonics at the same Institute. Goswami is an associate editor of the open-access journal Science Advances. He is also an Academic Editor for PLOS One and PeerJ Chemistry. He has contributed to the theory of Quantum Computing as well as nonlinear optical spectroscopy. His work is documented in more than 200 research publications. He is an elected Fellow of the Royal Society of Chemistry, Fellow of the Institute of Physics, the SPIE, and The Optical Society. He is also a Senior Member of the IEEE, has been awarded a Swarnajayanti Fellowship for Chemical Sciences, and has held a Wellcome Trust Senior Research Fellowship. He is the third Indian to be awarded the International Commission for Optics Galileo Galilei Medal for excellence in optics.

References

  1. 1 2 Segal, Dvira (February 2014). "A tribute to Paul Brumer". Canadian Journal of Chemistry. 92 (2): v. doi:10.1139/cjc-2014-0010.
  2. "APS Fellow Archive". American Physical Society. Retrieved 16 December 2022.
  3. "ONR-funded researcher wins Canada's highest academic honor" (Press release). Office of Naval Research. 7 May 2000. Archived from the original on 8 November 2004.