Peirce's law

Last updated

In logic, Peirce's law is named after the philosopher and logician Charles Sanders Peirce. It was taken as an axiom in his first axiomatisation of propositional logic. It can be thought of as the law of excluded middle written in a form that involves only one sort of connective, namely implication.

Contents

In propositional calculus, Peirce's law says that ((PQ)→P)→P. Written out, this means that P must be true if there is a proposition Q such that the truth of P follows from the truth of "if P then Q".

Peirce's law does not hold in intuitionistic logic or intermediate logics and cannot be deduced from the deduction theorem alone.

Under the Curry–Howard isomorphism, Peirce's law is the type of continuation operators, e.g. call/cc in Scheme. [1]

History

Here is Peirce's own statement of the law:

A fifth icon is required for the principle of excluded middle and other propositions connected with it. One of the simplest formulae of this kind is:
{(xy) ⤙ x} ⤙ x.
This is hardly axiomatical. That it is true appears as follows. It can only be false by the final consequent x being false while its antecedent (xy) ⤙ x is true. If this is true, either its consequent, x, is true, when the whole formula would be true, or its antecedent xy is false. But in the last case the antecedent of xy, that is x, must be true. (Peirce, the Collected Papers 3.384).

Peirce goes on to point out an immediate application of the law:

From the formula just given, we at once get:
{(xy) ⤙ a} ⤙ x,
where the a is used in such a sense that (xy) ⤙ a means that from (xy) every proposition follows. With that understanding, the formula states the principle of excluded middle, that from the falsity of the denial of x follows the truth of x. (Peirce, the Collected Papers 3.384).

Warning: As explained in the text, "a" here does not denote a propositional atom, but something like the quantified propositional formula . The formula ((xy) → a) → x would not be a tautology if a were interpreted as an atom.

Relations between principles

In intuitionistic logic, if is proven or rejected, or if is provenly valid, then Pierce's law for the two propositions holds. But the law's special case when is rejected, called consequentia mirabilis, is equivalent to excluded middle already over minimal logic. This also means that Piece's law entails classical logic over intuitionistic logic, as also shown below. Intuitionistically, not even the constraint implies the law for two propositions. Postulating the latter to be valid results in Smetanich's intermediate logic.

It is helpful to consider Pierce's law in the equivalent form . Indeed, from follows , and so is equivalent to . The case now directly shows how double-negation elimination implies consequentia mirabilis over minimal logic.

In intuitionistic logic, explosion can be used for , and so here the law's special case consequentia mirabilis also implies double-negation elimination. As the double-negated excluded middle is always already valid even in minimal logic, this also intuitionistically proves excluded middle. In the other direction, one can intuitionistically also show that excluded middle implies Piece's law directly. To this end, note that using the principle of explosion, excluded middle may be expressed as . In words, this may be expressed as: "Every proposition either holds or implies any other proposition." Now to prove the law, note that is derivable from just implication introduction on the one hand and modus ponens on the other. Finally, in place of consider .

Another proof of the law in classical logic proceeds by passing through the classically valid reverse disjunctive syllogism twice: First note that is implied by , which is intuitionistically equivalent to . Now explosion entails that implies , and using excluded middle for entails that these two are in fact equivalent. Taken together, this means that in classical logic is equivalent to .

Using Peirce's law with the deduction theorem

Peirce's law allows one to enhance the technique of using the deduction theorem to prove theorems. Suppose one is given a set of premises Γ and one wants to deduce a proposition Z from them. With Peirce's law, one can add (at no cost) additional premises of the form ZP to Γ. For example, suppose we are given PZ and (PQ)→Z and we wish to deduce Z so that we can use the deduction theorem to conclude that (PZ)→(((PQ)→Z)→Z) is a theorem. Then we can add another premise ZQ. From that and PZ, we get PQ. Then we apply modus ponens with (PQ)→Z as the major premise to get Z. Applying the deduction theorem, we get that (ZQ)→Z follows from the original premises. Then we use Peirce's law in the form ((ZQ)→Z)→Z and modus ponens to derive Z from the original premises. Then we can finish off proving the theorem as we originally intended.

  • PZ
1. hypothesis
    • (PQ)→Z
2. hypothesis
      • ZQ
3. hypothesis
        • P
4. hypothesis
        • Z
5. modus ponens using steps 4 and 1
        • Q
6. modus ponens using steps 5 and 3
      • PQ
7. deduction from 4 to 6
      • Z
8. modus ponens using steps 7 and 2
    • (ZQ)→Z
9. deduction from 3 to 8
    • ((ZQ)→Z)→Z
10. Peirce's law
    • Z
11. modus ponens using steps 9 and 10
  • ((PQ)→Z)→Z
12. deduction from 2 to 11

(PZ)→(((PQ)→Z)→Z)

13. deduction from 1 to 12 QED

Completeness of the implicational propositional calculus

One reason that Peirce's law is important is that it can substitute for the law of excluded middle in the logic which only uses implication. The sentences which can be deduced from the axiom schemas:

(where P,Q,R contain only "→" as a connective) are all the tautologies which use only "→" as a connective.

Failure in non-classical models of intuitionistic logic

Since Peirce's law implies the law of the excluded middle, it must always fail in non-classical intuitionistic logics. A simple explicit counterexample is that of Gödel many valued logics, which are a fuzzy logic where truth values are real numbers between 0 and 1, with material implication defined by:

and where Peirce's law as a formula can be simplified to:

where it always being true would be equivalent to the statement that u > v implies u = 1, which is true only if 0 and 1 are the only allowed values. At the same time however, the expression cannot ever be equal to the bottom truth value of the logic and its double negation is always true.

See also

Notes

  1. Timothy G. Griffin, A Formulae-as-Types Notion of Control, 1990 - Griffin defines K on page 3 as an equivalent to Scheme's call/cc and then discusses its type being the equivalent of Peirce's law at the end of section 5 on page 9.

Further reading

Related Research Articles

In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the three laws of thought, along with the law of noncontradiction, and the law of identity; however, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws. The law is also known as the law / principleof the excluded third, in Latin principium tertii exclusi. Another Latin designation for this law is tertium non datur or "no third [possibility] is given". In classical logic, the law is a tautology.

In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid.

<span class="mw-page-title-main">De Morgan's laws</span> Pair of logical equivalences

In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation.

<span class="mw-page-title-main">Contradiction</span> Logical incompatibility between two or more propositions

In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's law of noncontradiction states that "It is impossible that the same thing can at the same time both belong and not belong to the same object and in the same respect."

<span class="mw-page-title-main">Negation</span> Logical operation

In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition to another proposition "not ", standing for " is not true", written , or . It is interpreted intuitively as being true when is false, and false when is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes truth to falsity. In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition is the proposition whose proofs are the refutations of .

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics.

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.

In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ab of implication such that (ca) ≤ b is equivalent to c ≤ (ab). From a logical standpoint, AB is by this definition the weakest proposition for which modus ponens, the inference rule AB, AB, is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by Arend Heyting (1930) to formalize intuitionistic logic.

In propositional logic, the double negation of a statement states that "it is not the case that the statement is not true". In classical logic, every statement is logically equivalent to its double negation, but this is not true in intuitionistic logic; this can be expressed by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.

Paraconsistent logic is a type of non-classical logic that allows for the coexistence of contradictory statements without leading to a logical explosion, where anything can be proven true. Specifically, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic, purposefully excluding the principle of explosion.

In logic, a rule of inference is admissible in a formal system if the set of theorems of the system does not change when that rule is added to the existing rules of the system. In other words, every formula that can be derived using that rule is already derivable without that rule, so, in a sense, it is redundant. The concept of an admissible rule was introduced by Paul Lorenzen (1955).

In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.

In mathematical logic, a tautology is a formula that is true regardless of the interpretation of its component terms, with only the logical constants having a fixed meaning. For example, a formula that states, "the ball is green or the ball is not green," is always true, regardless of what a ball is and regardless of its colour. Tautology is usually, though not always, used to refer to valid formulas of propositional logic.

In mathematics, a set is inhabited if there exists an element .

Consequentia mirabilis, also known as Clavius's Law, is used in traditional and classical logic to establish the truth of a proposition from the inconsistency of its negation. It is thus related to reductio ad absurdum, but it can prove a proposition using just its own negation and the concept of consistency. For a more concrete formulation, it states that if a proposition is a consequence of its negation, then it is true, for consistency. In formal notation:

In logic and mathematics, contraposition, or transposition, refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

In mathematical logic, Diaconescu's theorem, or the Goodman–Myhill theorem, states that the full axiom of choice is sufficient to derive the law of the excluded middle or restricted forms of it.

In proof theory and constructive mathematics, the principle of independence of premise (IP) states that if φ and ∃x θ are sentences in a formal theory and φ → ∃x θ is provable, then x (φ → θ) is provable. Here x cannot be a free variable of φ, while θ can be a predicate depending on it.

Minimal logic, or minimal calculus, is a symbolic logic system originally developed by Ingebrigt Johansson. It is an intuitionistic and paraconsistent logic, that rejects both the law of the excluded middle as well as the principle of explosion, and therefore holding neither of the following two derivations as valid: