Pentagramma mirificum

Last updated
Sample configurations of pentagramma mirificum Pentagramma-mirificum.gif
Sample configurations of pentagramma mirificum
Relations between the angles and sides of five right triangles adjacent to the inner pentagon. Their Napier's circles contain circular shifts of parts
(
a
,
{\displaystyle (a,}
p
/
2
-
B
,
{\displaystyle \pi /2-B,}
p
/
2
-
c
,
{\displaystyle \pi /2-c,}
p
/
2
-
A
,
{\displaystyle \pi /2-A,}
b
)
{\displaystyle b)} Pentagramma-mirificum.png
Relations between the angles and sides of five right triangles adjacent to the inner pentagon. Their Napier’s circles contain circular shifts of parts

Pentagramma mirificum (Latin for "miraculous pentagram") is a star polygon on a sphere, composed of five great circle arcs, all of whose internal angles are right angles. This shape was described by John Napier in his 1614 book Mirifici Logarithmorum Canonis Descriptio (Description of the Admirable Table of Logarithms) along with rules that link the values of trigonometric functions of five parts of a right spherical triangle (two angles and three sides). The properties of pentagramma mirificum were studied, among others, by Carl Friedrich Gauss. [1]

Contents

Geometric properties

On a sphere, both the angles and the sides of a triangle (arcs of great circles) are measured as angles.

There are five right angles, each measuring at , , , , and

There are ten arcs, each measuring , , , , , , , , , and

In the spherical pentagon , every vertex is the pole of the opposite side. For instance, point is the pole of equator , point — the pole of equator , etc.

At each vertex of pentagon , the external angle is equal in measure to the opposite side. For instance, etc.

Napier's circles of spherical triangles , , , , and are rotations of one another.

Gauss's formulas

Gauss introduced the notation

The following identities hold, allowing the determination of any three of the above quantities from the two remaining ones: [2]

Gauss proved the following "beautiful equality" (schöne Gleichung): [2]

It is satisfied, for instance, by numbers , whose product is equal to .

Proof of the first part of the equality:

Proof of the second part of the equality:

From Gauss comes also the formula [2]

where is the area of pentagon .

Gnomonic projection

The image of spherical pentagon in the gnomonic projection (a projection from the centre of the sphere) onto any plane tangent to the sphere is a rectilinear pentagon. Its five vertices unambiguously determine a conic section; in this case — an ellipse. Gauss showed that the altitudes of pentagram (lines passing through vertices and perpendicular to opposite sides) cross in one point , which is the image of the point of tangency of the plane to sphere.

Arthur Cayley observed that, if we set the origin of a Cartesian coordinate system in point , then the coordinates of vertices : satisfy the equalities , where is the length of the radius of the sphere. [3]

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the change per unit length, but it is otherwise dimensionless. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the sign of a permutation of the natural numbers 1, 2, ..., n, for some positive integer n. It is named after the Italian mathematician and physicist Tullio Levi-Civita. Other names include the permutation symbol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric property and definition in terms of permutations.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

The Havriliak–Negami relaxation is an empirical modification of the Debye relaxation model in electromagnetism. Unlike the Debye model, the Havriliak–Negami relaxation accounts for the asymmetry and broadness of the dielectric dispersion curve. The model was first used to describe the dielectric relaxation of some polymers, by adding two exponential parameters to the Debye equation:

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

<span class="mw-page-title-main">Duffing equation</span> Non-linear second order differential equation and its attractor

The Duffing equation, named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

The history of Lorentz transformations comprises the development of linear transformations forming the Lorentz group or Poincaré group preserving the Lorentz interval and the Minkowski inner product .

<span class="mw-page-title-main">Dual quaternion</span>

In mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form A + εB, where A and B are ordinary quaternions and ε is the dual unit, which satisfies ε2 = 0 and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib later produced a set of trigonometric tables.

In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus, developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century.

<span class="mw-page-title-main">Relativistic Lagrangian mechanics</span> Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

In the mathematical field of differential geometry, a biharmonic map is a map between Riemannian or pseudo-Riemannian manifolds which satisfies a certain fourth-order partial differential equation. A biharmonic submanifold refers to an embedding or immersion into a Riemannian or pseudo-Riemannian manifold which is a biharmonic map when the domain is equipped with its induced metric. The problem of understanding biharmonic maps was posed by James Eells and Luc Lemaire in 1983. The study of harmonic maps, of which the study of biharmonic maps is an outgrowth, had been an active field of study for the previous twenty years. A simple case of biharmonic maps is given by biharmonic functions.

<span class="mw-page-title-main">Dual graviton</span> Hypothetical particle found in supergravity

In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of supergravity in eleven dimensions.

In mathematics, Rathjen's  psi function is an ordinal collapsing function developed by Michael Rathjen. It collapses weakly Mahlo cardinals to generate large countable ordinals. A weakly Mahlo cardinal is a cardinal such that the set of regular cardinals below is closed under . Rathjen uses this to diagonalise over the weakly inaccessible hierarchy.

References

  1. Gauss, Carl Friedrich (1866). "Pentagramma mirificum". Werke, Band III: Analysis. Göttingen: Königliche Gesellschaft der Wissenschaften. pp. 481–490.
  2. 1 2 3 Coxeter, H. S. M. (1971). "Frieze patterns" (PDF). Acta Arithmetica. 18: 297–310. doi: 10.4064/aa-18-1-297-310 .
  3. Cayley, Arthur (1871). "On Gauss's pentagramma mirificum". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 42 (280): 311–312. doi:10.1080/14786447108640572.