Perchlorylbenzene

Last updated
Perchlorylbenzene
Perchlorylbenzene.png
Names
IUPAC name
(Trioxo-λ7-chloranyl)benzene
Other names
Phenyltrioxo-λ7-chlorane
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/C6H5ClO3/c8-7(9,10)6-4-2-1-3-5-6/h1-5H
    Key: XUEMDHFELUYLBX-UHFFFAOYSA-N
  • C1=CC=C(C=C1)Cl(=O)(=O)=O
Properties
C6H5ClO3
Molar mass 160.55 g·mol−1
Boiling point 232 °C (450 °F; 505 K)(78 °C @ 2 mmHg)
Hazards
Main hazards Explosive
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Perchlorylbenzene (C6H5ClO3, PhClO3, is an aromatic compound prepared by direct electrophilic perchlorylation of benzene using perchloryl fluoride and aluminum trichloride: [1]

Synth-PhClO3.png

The compound is described as a somewhat shock-sensitive oily liquid. It exhibits low chemical reactivity and is inert towards acidic (HCl (aq.)) or reducing (LiAlH4, H2/Pd) conditions. However, it undergoes hydrolysis upon reflux in aqueous KOH to afford phenol, and undergoes aromatic nitration to afford the meta-nitration product, as expected for a strongly –I, –M substituent.

It and its derivatives have been investigated as novel energetic materials analogous to nitro compounds. [2]

See also

Related Research Articles

Nitronium ion Ion

The nitronium ion, NO+
2
, is a cation. It is an onium ion because of its tetravalent nitrogen atom and +1 charge, similar in that regard to ammonium. It is created by the removal of an electron from the paramagnetic nitrogen dioxide molecule, or the protonation of nitric acid (with removal of H2O).

In chemistry, a leaving group is a molecular fragment that departs with a pair of electrons in heterolytic bond cleavage. Leaving groups can be anions, cations or neutral molecules, but in either case it is crucial that the leaving group be able to stabilize the additional electron density that results from bond heterolysis. Common anionic leaving groups are halides such as Cl, Br, and I, and sulfonate esters such as tosylate (TsO). Fluoride (F) functions as a leaving group in the nerve agent sarin gas. Common neutral molecule leaving groups are water and ammonia. Leaving groups may also be positively charged cations (such as H+ released during the nitration of benzene); these are also known specifically as electrofuges.

In chemistry, halogenation is a chemical reaction that involves the addition of one or more halogens to a compound or material. The pathway and stoichiometry of halogenation depends on the structural features and functional groups of the organic substrate, as well as on the specific halogen. Inorganic compounds such as metals also undergo halogenation.

Electrophilic substitution reactions are chemical reactions in which an electrophile displaces a functional group in a compound, which is typically, but not always, a hydrogen atom. Electrophilic aromatic substitution reactions are characteristic of aromatic compounds and are common ways of introducing functional groups into benzene rings. Some aliphatic compounds can undergo electrophilic substitution as well.

Acyl halide chemical compound

An acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters between alcohols and nitric acid. The difference between the resulting molecular structures of nitro compounds and nitrates is that the nitrogen atom in nitro compounds is directly bonded to a non-oxygen atom, whereas in nitrate esters, the nitrogen is bonded to an oxygen atom that in turn usually is bonded to a carbon atom.

The Sandmeyer reaction is a chemical reaction used to synthesize aryl halides from aryl diazonium salts using copper salts as reagents or catalysts. It is an example of a radical-nucleophilic aromatic substitution. The Sandmeyer reaction provides a method through which one can perform unique transformations on benzene, such as halogenation, cyanation, trifluoromethylation, and hydroxylation.

Aromatic sulfonation is an organic reaction in which a hydrogen atom on an arene is replaced by a sulfonic acid functional group in an electrophilic aromatic substitution. Aryl sulfonic acids are used as detergents, dye, and drugs.

Diazonium compound Diazonium salts of formula R-N≡N+

Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group R−N+
2
X
where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halogen.

An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment. Inorganic nonaqueous solvents can be classified into two groups, protic solvents and aprotic solvents. Early studies on inorganic nonaqueous solvents evaluated ammonia, hydrogen fluoride, sulfuric acid, as well as more specialized solvents, hydrazine, and selenium oxychloride.

Tetrafluoroborate Anion

Tetrafluoroborate is the anion BF
4
. This tetrahedral species is isoelectronic with tetrafluoroberyllate (BeF2−
4
), tetrafluoromethane (CF4), and tetrafluoroammonium (NF+
4
) and is valence isoelectronic with many stable and important species including the perchlorate anion, ClO
4
, which is used in similar ways in the laboratory. It arises by the reaction of fluoride salts with the Lewis acid BF3, treatment of tetrafluoroboric acid with base, or by treatment of boric acid with hydrofluoric acid.

Perchloryl fluoride is a reactive gas with the chemical formula ClO
3
F
. It has a characteristic sweet odor that resembles gasoline and kerosene. It is toxic and is a powerful oxidizing and fluorinating agent. It is the acid fluoride of perchloric acid.

Chloryl fluoride Chemical compound

Chloryl fluoride is the chemical compound with the formula ClO2F. It is commonly encountered as side-product in reactions of chlorine fluorides with oxygen sources. It is the acyl fluoride of chloric acid.

Fluorobenzene Chemical compound

Fluorobenzene is the chemical compound with the formula C6H5F, often abbreviated PhF. A colorless liquid, it is a precursor to many fluorophenyl compounds.

Arsabenzene Chemical compound

Arsabenzene (IUPAC name: arsinine) is an organoarsenic heterocyclic compound with the chemical formula C5H5As. It belongs to a group of compounds called heteroarenes that have the general formula C5H5E (E= N, P, As, Sb, Bi).

Tetrafluoroammonium

The tetrafluoroammonium cation is a positively charged polyatomic ion with chemical formula NF+
4
. It is equivalent to the ammonium ion where the hydrogen atoms surrounding the central nitrogen atom have been replaced by fluorine. Tetrafluoroammonium ion is isoelectronic with tetrafluoromethane CF
4
, trifluoramine oxide ONF
3
and the tetrafluoroborate BF
4
anion.

4-Nitrochlorobenzene Chemical compound

4-Nitrochlorobenzene is the organic compound with the formula ClC6H4NO2. It is a pale yellow solid. 4-Nitrochlorobenzene is a common intermediate in the production of a number of industrially useful compounds, including common antioxidants found in rubber. Other isomers with the formula ClC6H4NO2 include 2-nitrochlorobenzene and 3-nitrochlorobenzene.

Electrophilic aromatic substitution is an organic reaction in which an atom that is attached to an aromatic system is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration, aromatic halogenation, aromatic sulfonation, and alkylation and acylation Friedel–Crafts reaction.

2-Nitrochlorobenzene Chemical compound

2-Nitrochlorobenzene is an organic compound with the formula ClC6H4NO2. It is one of three isomeric nitrochlorobenzenes. It is a yellow crystalline solid that is important as a precursor to other compounds due to its two functional groups.

3-Nitrochlorobenzene Chemical compound

3-Nitrochlorobenzene is an organic compound with the formula C6H4ClNO2. It is a yellow crystalline solid that is important as a precursor to other compounds due to the two reactive sites present on the molecule.

References

  1. Inman, C. E.; Oesterling, R. E.; Tyczkowski, E. A. (1958-10-01). "Reactions of Perchloryl Fluoride with Organic Compounds. I. Perchlorylation of Aromatic Compounds1". Journal of the American Chemical Society. 80 (19): 5286–5288. doi:10.1021/ja01552a069. ISSN   0002-7863.
  2. Ledgard, Jared (2007). The Preparatory Manual of Explosives. ISBN   9780615142906.