Perimycin

Last updated
Perimycin
Perimycin A.png
Names
IUPAC name
(1R,3S,5S,7R,9R,13R,17R,18S,19E,21E,23Z,25Z,27E,29E,31E,33R,35S,36R,37S)-33-[(2R,3S,4S,5S,6R)-5-amino-3,4-dihydroxy-6-methyloxan-2-yl]oxy-1,3,5,7,9,13,37-heptahydroxy-17-[(2S)-5-hydroxy-7-[4-(methylamino)phenyl]-7-oxoheptan-2-yl]-18,36-dimethyl-16,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-11,15-dione
Other names
4ʼ-Amino-3ʼ-deamino-18-decarboxy-40-demethyl-4ʼ-deoxy-3,7-dideoxo-3,3ʼ,7-trihydroxy-N47,18,dimethyl-5-oxocandicidin-D-cyclic-15,19-hemiacetal
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C59H88N2O17/c1-36-18-16-14-12-10-8-6-7-9-11-13-15-17-19-49(76-58-56(73)55(72)54(60)39(4)75-58)33-52-38(3)51(70)35-59(74,78-52)34-48(68)30-46(66)28-44(64)26-43(63)27-45(65)29-47(67)32-53(71)77-57(36)37(2)20-25-42(62)31-50(69)40-21-23-41(61-5)24-22-40/h6-19,21-24,36-39,42-44,46-49,51-52,54-58,61-64,66-68,70,72-74H,20,25-35,60H2,1-5H3/b7-6-,10-8-,11-9+,14-12+,15-13+,18-16+,19-17+/t36-,37-,38+,39+,42?,43+,44-,46-,47+,48-,49-,51-,52-,54+,55-,56-,57-,58-,59+/m0/s1
    Key: SIJFZOSSGXKJCI-FTNWOYNKSA-N
  • O=C1C[C@@H](O)CC(OC([C@@H](C)CCC(O)CC(C4=CC=C(NC)C=C4)=O)([H])[C@@H](C)/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](O[C@@]3([H])[C@@H](O)[C@@H](O)[C@H](N)[C@@H](C)O3)C[C@]([C@H](C)[C@@H](O)C2)([H])O[C@@]2(O)C[C@@H](O)C[C@@H](O)C[C@@H](O)C[C@@H](O)C1)=O
Properties
C59H88N2O17
Molar mass 1097.33 g/mol
AppearanceAmorphous, golden-yellow solid
Melting point Indefinite
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Perimycin, also known as aminomycin and fungimycin, is polyene antibiotic produced by Streptomyces coelicolor var. aminophilus. [1] [2] [3] [4] The compound exhibits antifungal properties.[ citation needed ]

Contents

Composition

Perimycin is produced naturally as a mixture of three types: A, B and C, with type A being the major component. All types consist of a polyketide core with a perosamine sugar moiety. The variations occur at the end of the core opposite the perosamine moiety. Perimycin A has an aromatic group in this position, whereas the identities of the analogous groups in the other perimycin types are currently undetermined.[ citation needed ]

Usage

Polyene antibiotics in general are often toxic to humans and have poor bioavailability. Thus, with the notable exception of amphotericin B, they are often not used clinically. Perimycin has been shown to be an effective antifungal compound, but is not widely used in clinical settings. [5]

Related Research Articles

<span class="mw-page-title-main">Antibiotic</span> Antimicrobial substance active against bacteria

An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention of such infections. They may either kill or inhibit the growth of bacteria. A limited number of antibiotics also possess antiprotozoal activity. Antibiotics are not effective against viruses such as the common cold or influenza; drugs which inhibit growth of viruses are termed antiviral drugs or antivirals rather than antibiotics. They are also not effective against fungi; drugs which inhibit growth of fungi are called antifungal drugs.

<span class="mw-page-title-main">Macrolide</span> Class of natural products

The Macrolides are a class of natural products that consist of a large macrocyclic lactone ring to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. The lactone rings are usually 14-, 15-, or 16-membered. Macrolides belong to the polyketide class of natural products. Some macrolides have antibiotic or antifungal activity and are used as pharmaceutical drugs. Rapamycin is also a macrolide and was originally developed as an antifungal, but is now used as an immunosuppressant drug and is being investigated as a potential longevity therapeutic.

In organic chemistry, polyenes are poly-unsaturated, organic compounds that contain at least three alternating double and single carbon–carbon bonds. These carbon–carbon double bonds interact in a process known as conjugation, resulting in some unusual optical properties. Related to polyenes are dienes, where there are only two alternating double and single bonds.

<span class="mw-page-title-main">Antifungal</span> Pharmaceutical fungicide or fungistatic used to treat and prevent mycosis

An antifungal medication, also known as an antimycotic medication, is a pharmaceutical fungicide or fungistatic used to treat and prevent mycosis such as athlete's foot, ringworm, candidiasis (thrush), serious systemic infections such as cryptococcal meningitis, and others. Such drugs are usually obtained by a doctor's prescription, but a few are available over the counter (OTC).

<span class="mw-page-title-main">Amphotericin B</span> Antifungal and antiparasitaric Chemical compound

Amphotericin B is an antifungal medication used for serious fungal infections and leishmaniasis. The fungal infections it is used to treat include mucormycosis, aspergillosis, blastomycosis, candidiasis, coccidioidomycosis, and cryptococcosis. For certain infections it is given with flucytosine. It is typically given intravenously.

<i>Streptomyces</i> Genus of bacteria

Streptomyces is the largest genus of Actinomycetota and the type genus of the family Streptomycetaceae. Over 500 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin.

Polyketides are a class of natural products derived from a precursor molecule consisting of a chain of alternating ketone (or reduced forms of a ketone) and methylene groups: (-CO-CH2-). First studied in the early 20th century, discovery, biosynthesis, and application of polyketides has evolved. It is a large and diverse group of secondary metabolites caused by its complex biosynthesis which resembles that of fatty acid synthesis. Because of this diversity, polyketides can have various medicinal, agricultural, and industrial applications. Many polyketides are medicinal or exhibit acute toxicity. Biotechnology has enabled discovery of more naturally-occurring polyketides and evolution of new polyketides with novel or improved bioactivity.

Polyene antimycotics, sometimes referred to as polyene antibiotics, are a class of antimicrobial polyene compounds that target fungi. These polyene antimycotics are typically obtained from some species of Streptomyces bacteria. Previously, polyenes were thought to bind to ergosterol in the fungal cell membrane and thus weakening it and causing leakage of K+ and Na+ ions, which could contribute to fungal cell death. However, more detailed studies of polyene molecular properties have challenged this model suggesting that polyenes instead bind and extract ergosterol directly from the cellular membrane thus disrupting the many cellular functions ergosterols perform. Amphotericin B, nystatin, and natamycin are examples of polyene antimycotics. They are a subgroup of macrolides.

<span class="mw-page-title-main">Mevastatin</span>

Mevastatin is a hypolipidemic agent that belongs to the statins class.

<span class="mw-page-title-main">Calicheamicin</span> Chemical compound

The calicheamicins are a class of enediyne antitumor antibiotics derived from the bacterium Micromonospora echinospora, with calicheamicin γ1 being the most notable. It was isolated originally in the mid-1980s from the chalky soil, or "caliche pits", located in Kerrville, Texas. The sample was collected by a scientist working for Lederle Labs. It is extremely toxic to all cells and, in 2000, a CD33 antigen-targeted immunoconjugate N-acetyl dimethyl hydrazide calicheamicin was developed and marketed as targeted therapy against the non-solid tumor cancer acute myeloid leukemia (AML). A second calicheamicin-linked monoclonal antibody, inotuzumab ozogamicin an anti-CD22-directed antibody-drug conjugate, was approved by the U.S. Food and Drug Administration on August 17, 2017, for use in the treatment of adults with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Calicheamicin γ1 and the related enediyne esperamicin are the two of the most potent antitumor agents known.

<span class="mw-page-title-main">Perosamine</span> Chemical compound

Perosamine is a mannose-derived 4-aminodeoxysugar produced by some bacteria.

<span class="mw-page-title-main">Hamycin</span>

Hamycin is a pair polyene antimycotic organic compounds described in India. It is a heptaene antifungal compound rather similar in chemical structure to amphotericin B except that it has an additional aromatic group bonded to the molecule. When pure, hamycin is a yellow, powdered solid. There are two versions of hamycin with very similar chemical structures: hamycin A and hamycin B.

<span class="mw-page-title-main">Hachimycin</span>

Hachimycin, also known as trichomycin, is a polyene macrolide antibiotic, antiprotozoal, and antifungal derived from streptomyces. It was first described in 1950, and in most research cases have been used for gynecological infections.

<span class="mw-page-title-main">Enediyne</span> Any organic compound containing one double and two triple bonds

In organic chemistry, enediynes are organic compounds containing two triple bonds and one double bond.

The aminocyclitols are compounds related to cyclitols. They possess features of relative and absolute configuration that are characteristic of their class and have been extensively studied; but these features are not clearly displayed by general methods of stereochemical nomenclature, so that special methods of specifying their configuration are justified and have long been used. In other than stereochemical respects, their nomenclature should follow the general rules of organic chemistry.

Streptomyces isolates have yielded the majority of human, animal, and agricultural antibiotics, as well as a number of fundamental chemotherapy medicines. Streptomyces is the largest antibiotic-producing genus of Actinomycetota, producing chemotherapy, antibacterial, antifungal, antiparasitic drugs, and immunosuppressants. Streptomyces isolates are typically initiated with the aerial hyphal formation from the mycelium.

<span class="mw-page-title-main">Cyclothiazomycin</span> Chemical compound

The cyclothiazomycins are a group of natural products, classified as thiopeptides, which are produced by various Streptomyces species of bacteria.

Streptomyces albidoflavus is a bacterium species from the genus of Streptomyces which has been isolated from soil from Poland. Streptomyces albidoflavus produces dibutyl phthalate and streptothricins.

Butyrolactol A is an organic chemical compound of interest for its potential use as an antifungal antibiotic.

Tautomycetin is a natural product first isolated from Streptomyces griseochromogenes, a bacterium found in the soil of the Zhejiang Province, China. It was also later found in Penicillium urticae. It is a linear polyketide very similar in structure to tautomycin, both of which contain a unique dialkylmaleic anhydride moiety, which is essential for their pharmacological activity. Tautomycetin is a selective inhibitor of protein phosphatase 1.

References

  1. Hamilton-Miller JM (June 1973). "Chemistry and biology of the polyene macrolide antibiotics". Bacteriological Reviews. 37 (2): 166–96. doi:10.1128/br.37.2.166-196.1973. PMC   413810 . PMID   4578757.
  2. Liu CM, McDaniel LE, Schaffner CP (March 1972). "Fungimycin, biogenesis of its aromatic moiety". The Journal of Antibiotics. 25 (3): 187–8. doi: 10.7164/antibiotics.25.187 . PMID   5034814.
  3. Lee CH, Schaffner CP (May 1969). "Perimycin. The structure of some degradation products". Tetrahedron. 25 (10): 2229–32. doi:10.1016/S0040-4020(01)82770-8. PMID   5788396.
  4. Pawlak J, Sowiński P, Borowski E, Gariboldi P (September 1995). "Stereostructure of perimycin A". The Journal of Antibiotics. 48 (9): 1034–8. doi: 10.7164/antibiotics.48.1034 . PMID   7592049.
  5. Elmer, Y. Tu; Charlotte E. Joslina; Lisa M. Nijmc; Robert S. Federd; Sandeep Jaina; Megan E. Shoffe (July 2009). "Polymicrobial Keratitis: Acanthamoeba and Infectious Crystalline Keratopathy". American Journal of Ophthalmology. 148 (1): 13–19.e2. doi:10.1016/j.ajo.2009.01.020. PMC   2830559 . PMID   19327742.