Perovskite light-emitting diode

Last updated

Perovskite light-emitting diodes (PeLEDs) are candidates for display and lighting technologies. Researchers have shown interest in perovskite light-emitting diodes (PeLEDs) owing to their capacity for emitting light with narrow bandwidth, adjustable spectrum, ability to deliver high color purity, and solution fabrication. [1] [2]

Contents

Green PeLEDs

PeLEDs have not surpassed the efficiency of commercial organic light-emitting diodes (OLEDs) because specific critical parameters, such as charge carrier transport and optical output coupling efficiency, have not been optimized. [2]

The development of efficient green PeLEDs with a external quantum efficiency (EQE) exceeding 30% was reported by Bai and his colleagues on May 29, 2023. [2] This achievement was made by adjustments in charge carrier transport and the distribution of near-field light. These optimizations resulted in a light output coupling efficiency of 41.82%.

The modified structure of green PeLED achieved record external quantum efficiency of 30.84% at a brightness level of 6514 cd/m2. This work introduced an approach to building ultra-efficient PeLEDs by balancing electron-hole recombination and enhancing light outcoupling. [2]

Expanding the effective area of perovskite LEDs can decrease their performance. Sun et al. [3] introduced L-methionine (NVAL) to construct an intermediate phase with low formation enthalpy and COO- coordination. This new intermediate phase altered the crystallization pathway, effectively inhibiting phase segregation. Consequently, high-quality large-area quasi-2D perovskite films were achieved. They further fine-tuned the film's composite dynamics, leading to high-efficiency quasi-2D perovskite green LEDs with an effective area of 9.0 cm2. An external quantum efficiency (EQE) of 16.4% was attained at <n> = 3, making it the most efficient large-area perovskite LED. Moreover, a luminance of 9.1×104 cd/m2 was achieved in the <n> = 10 films. [3]

Blue PeLEDs

On March 16, 2023, Zhou et al. [4] published a study demonstrating their successful control of ion behavior to create highly efficient sky-blue perovskite light-emitting diodes. They achieved this by utilizing a bifunctional passivator, which consisted of Lewis base benzoic acid anions and alkali metal cations. This passivator had a dual role: it effectively passivated the deficient lead atom while inhibited the migration of halide ions. The outcome of this innovative approach was the realization of an efficient perovskite LED that emitted light at a stable wavelength of 483 nm. The LED exhibited a commendable external quantum efficiency (EQE) of 16.58%, with a peak EQE reaching 18.65%. Through optical coupling enhancement, the EQE was further boosted to 28.82%. [4]

Red PeLEDs

One of the most crucial aspects of lighting and display technology is the efficient generation of red emission. Quasi-2D perovskites have demonstrated potential for high emission efficiency due to robust carrier confinement. However, the external quantum efficiencies (EQE) of most red quasi-2D PeLEDs are not optimal due to different n-value phases within complex quasi-2D perovskite films.

To address this challenge, Jiang et al. [1] published their findings in Advanced Materials on July 20, 2022. Their research focused on strategically incorporating large cations to enhance the efficiency of red light perovskite LEDs. By introducing phenethylammonium iodide (PEAI)/3-fluorophenylethylammonium iodide (m-F-PEA) and 1-naphthylmethylammonium iodide (NMAI), they achieved precise control over the phase distribution of quasi-2D perovskite materials. This approach effectively reduced the prevalence of smaller n-index phases and concurrently addressed lead and halide defects in the perovskite films. The outcome of this research was the development of perovskite LEDs capable of achieving an EQE of 25.8% at 680 nm, accompanied by a peak brightness of 1300 cd/m2. [1]

White PeLEDs

High-performance white perovskite LED with high light extraction efficiency can be constructed through near-field optical coupling. [5] The near-field optical coupling between blue perovskite diode and red perovskite nanocrystal was achieved by a reasonably designed multi-layer translucent electrode (LiF/Al/Ag/LiF). The red perovskite nano-crystalline layer allows the waveguide mode and surface plasmon polarization mode captured in the blue perovskite diode to be extracted and converted into red light emission, increasing the light extraction efficiency by 50%. At the same time, the complementary emission spectra of blue photons and down-converted red photons contribute to the formation of white LEDs. Finally, the off-device quantum efficiency exceeds 12%, and the brightness exceeds 2000 cd/m2, which are both the highest in white PeLEDs. [5]

Lifetime

Preparing high-quality all-inorganic perovskite films through solution-based methods remains a formidable challenge, primarily attributed to the rapid and uncontrollable crystallization of such materials. The key innovation involved controlling the crystal orientation of the all-inorganic perovskite along the (110) plane through a low-temperature annealing process (35-40 °C). This precise control led to the orderly stacking of crystals, which significantly increased surface coverage and reduced defects within the material. After thorough optimization, the well-oriented CsPbBr3 perovskite LED achieved an external quantum efficiency (EQE) of up to 16.45%, a remarkable brightness of 79,932 cd/m2, and a lifespan of 136 hours when initially operated at a brightness level of 100 cd/m2. [6]

On September 20, 2021, the team led by Sargent et al. [7] from the University of Toronto published their research findings in the Journal of the American Chemical Society (JACS) on bright and stable light-emitting diodes (LEDs) based on perovskite quantum dots within a perovskite matrix. The research reported that perovskite quantum dots remain stable in a precursor solution thin film of perovskite and drive the uniform crystallization of the perovskite matrix using strain quantum dots as nucleation centers. The type I band alignment ensures that quantum dots act as charge acceptors and radiative emitters. [7]

The new material exhibits suppressed biexciton Auger recombination and bright luminescence even at high excitation (600 W/cm2). The red LEDs based on the new material demonstrate an external quantum efficiency of 18% and maintain high performance at a brightness exceeding 4700 cd/m2. The new material extends the LED's operating half-life to 2400 hours at an initial brightness of 100 cd/m2. [7]

Related Research Articles

<span class="mw-page-title-main">Light-emitting diode</span> Semiconductor and solid-state light source

A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light is determined by the energy required for electrons to cross the band gap of the semiconductor. White light is obtained by using multiple semiconductors or a layer of light-emitting phosphor on the semiconductor device.

<span class="mw-page-title-main">Laser diode</span> Semiconductor laser

A laser diode is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction.

<span class="mw-page-title-main">Photonics</span> Technical applications of optics

Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in the form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light. The term photonics developed as an outgrowth of the first practical semiconductor light emitters invented in the early 1960s and optical fibers developed in the 1970s.

<span class="mw-page-title-main">Vertical-cavity surface-emitting laser</span> Type of semiconductor laser diode

The vertical-cavity surface-emitting laser is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers which emit from surfaces formed by cleaving the individual chip out of a wafer. VCSELs are used in various laser products, including computer mice, fiber-optic communications, laser printers, Face ID, and smartglasses.

<span class="mw-page-title-main">Quantum dot</span> Nano-scale semiconductor particles

Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic in nanotechnology and materials science. When a quantum dot is illuminated by UV light, an electron in the quantum dot can be excited to a state of higher energy. In the case of a semiconducting quantum dot, this process corresponds to the transition of an electron from the valence band to the conductance band. The excited electron can drop back into the valence band releasing its energy as light. This light emission (photoluminescence) is illustrated in the figure on the right. The color of that light depends on the energy difference between the conductance band and the valence band, or the transition between discrete energy states when the band structure is no longer well-defined in QDs.

Poly(<i>p</i>-phenylene vinylene) Chemical compound

Poly(p-phenylene vinylene) (PPV, or polyphenylene vinylene) is a conducting polymer of the rigid-rod polymer family. PPV is the only polymer of this type that can be processed into a highly ordered crystalline thin film. PPV and its derivatives are electrically conducting upon doping. Although insoluble in water, its precursors can be manipulated in aqueous solution. The small optical band gap and its bright yellow fluorescence makes PPV a candidate in applications such as light-emitting diodes (LED) and photovoltaic devices. Moreover, PPV can be doped to form electrically conductive materials. Its physical and electronic properties can be altered by the inclusion of functional side groups.

<span class="mw-page-title-main">Quantum efficiency</span> Property of photosensitive devices

The term quantum efficiency (QE) may apply to incident photon to converted electron (IPCE) ratio of a photosensitive device, or it may refer to the TMR effect of a magnetic tunnel junction.

Indium gallium phosphide (InGaP), also called gallium indium phosphide (GaInP), is a semiconductor composed of indium, gallium and phosphorus. It is used in high-power and high-frequency electronics because of its superior electron velocity with respect to the more common semiconductors silicon and gallium arsenide.

Aluminium gallium indium phosphide is a semiconductor material that provides a platform for the development of multi-junction photovoltaics and optoelectronic devices. It has a direct bandgap ranging from ultraviolet to infrared photon energies.

<span class="mw-page-title-main">Quantum dot solar cell</span> Type of solar cell based on quantum dot devices

A quantum dot solar cell (QDSC) is a solar cell design that uses quantum dots as the captivating photovoltaic material. It attempts to replace bulk materials such as silicon, copper indium gallium selenide (CIGS) or cadmium telluride (CdTe). Quantum dots have bandgaps that are adjustable across a wide range of energy levels by changing their size. In bulk materials, the bandgap is fixed by the choice of material(s). This property makes quantum dots attractive for multi-junction solar cells, where a variety of materials are used to improve efficiency by harvesting multiple portions of the solar spectrum.

<span class="mw-page-title-main">Shockley–Queisser limit</span> Maximum theoretical efficiency of a solar cell

In physics, the radiative efficiency limit is the maximum theoretical efficiency of a solar cell using a single p-n junction to collect power from the cell where the only loss mechanism is radiative recombination in the solar cell. It was first calculated by William Shockley and Hans-Joachim Queisser at Shockley Semiconductor in 1961, giving a maximum efficiency of 30% at 1.1 eV. The limit is one of the most fundamental to solar energy production with photovoltaic cells, and is one of the field's most important contributions.

<span class="mw-page-title-main">Quantum dot display</span> Type of display device

A quantum dot display is a display device that uses quantum dots (QD), semiconductor nanocrystals which can produce pure monochromatic red, green, and blue light. Photo-emissive quantum dot particles are used in LCD backlights or display color filters. Quantum dots are excited by the blue light from the display panel to emit pure basic colors, which reduces light losses and color crosstalk in color filters, improving display brightness and color gamut. Light travels through QD layer film and traditional RGB filters made from color pigments, or through QD filters with red/green QD color converters and blue passthrough. Although the QD color filter technology is primarily used in LED-backlit LCDs, it is applicable to other display technologies which use color filters, such as blue/UV active-matrix organic light-emitting diode (AMOLED) or QNED/MicroLED display panels. LED-backlit LCDs are the main application of photo-emissive quantum dots, though blue organic light-emitting diode (OLED) panels with QD color filters are now coming to market.

A superluminescent diode is an edge-emitting semiconductor light source based on superluminescence. It combines the high power and brightness of laser diodes with the low coherence of conventional light-emitting diodes. Its emission optical bandwidth, also described as full-width at half maximum, can range from 5 up to 750 nm.

<span class="mw-page-title-main">Solar-cell efficiency</span> Ratio of energy extracted from sunlight in solar cells

Solar-cell efficiency is the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell.

<span class="mw-page-title-main">Polyfluorene</span> Chemical compound

Polyfluorene is a polymer with formula (C13H8)n, consisting of fluorene units linked in a linear chain — specifically, at carbon atoms 2 and 7 in the standard fluorene numbering. It can also be described as a chain of benzene rings linked in para positions with an extra methylene bridge connecting every pair of rings.

<span class="mw-page-title-main">Ruddlesden-Popper phase</span> Type of crystal structure

Ruddlesden-Popper (RP) phases are a type of perovskite structure that consists of two-dimensional perovskite-like slabs interleaved with cations. The general formula of an RP phase is An+1BnX3n+1, where A and B are cations, X is an anion, and n is the number of octahedral layers in the perovskite-like stack. Generally, it has a phase structure that results from the intergrowth of perovskite-type and NaCl-type structures.

<span class="mw-page-title-main">Perovskite solar cell</span> Alternative to silicon-based photovoltaics

A perovskite solar cell (PSC) is a type of solar cell that includes a perovskite-structured compound, most commonly a hybrid organic–inorganic lead or tin halide-based material as the light-harvesting active layer. Perovskite materials, such as methylammonium lead halides and all-inorganic cesium lead halide, are cheap to produce and simple to manufacture.

Light-emitting diodes (LEDs) produce light by the recombination of electrons and electron holes in a semiconductor, a process called "electroluminescence". The wavelength of the light produced depends on the energy band gap of the semiconductors used. Since these materials have a high index of refraction, design features of the devices such as special optical coatings and die shape are required to efficiently emit light. A LED is a long-lived light source, but certain mechanisms can cause slow loss of efficiency of the device or sudden failure. The wavelength of the light emitted is a function of the band gap of the semiconductor material used; materials such as gallium arsenide, and others, with various trace doping elements, are used to produce different colors of light. Another type of LED uses a quantum dot which can have its properties and wavelength adjusted by its size. Light-emitting diodes are widely used in indicator and display functions, and white LEDs are displacing other technologies for general illumination purposes.

Thermally activated delayed fluorescence (TADF) is a process through which a molecular species in a non-emitting excited state can incorporate surrounding thermal energy to change states and only then undergo light emission. The TADF process usually involves an excited molecular species in a triplet state, which commonly has a forbidden transition to the ground state termed phosphorescence. By absorbing nearby thermal energy the triplet state can undergo reverse intersystem crossing (RISC) converting it to a singlet state, which can then de-excite to the ground state and emit light in a process termed fluorescence. Along with fluorescent and phosphorescent compounds, TADF compounds are one of the three main light-emitting materials used in organic light-emitting diodes (OLEDs). Although most TADF molecules rely on the RISC from a triplet state to a singlet state, some of them take advantage of RISC processes between states with other spin multiplicities instead, for example from a quartet state to a doublet state.

<span class="mw-page-title-main">Perovskite nanocrystal</span> Class of semiconductor nanocrystals

Perovskite nanocrystals are a class of semiconductor nanocrystals, which exhibit unique characteristics that separate them from traditional quantum dots. Perovskite nanocrystals have an ABX3 composition where A = cesium, methylammonium (MA), or formamidinium (FA); B = lead or tin; and X = chloride, bromide, or iodide.

References

  1. 1 2 3 Jiang, Ji; Chu, Zema; Yin, Zhigang; Li, Jingzhen; Yang, Yingguo; Chen, Jingren; Wu, Jinliang; You, Jingbi; Zhang, Xingwang (September 2022). "Red Perovskite Light-Emitting Diodes with Efficiency Exceeding 25% Realized by Co-Spacer Cations". Advanced Materials. 34 (36): e2204460. Bibcode:2022AdM....3404460J. doi:10.1002/adma.202204460. ISSN   0935-9648. PMID   35855612. S2CID   250697931.
  2. 1 2 3 4 Bai, Wenhao; Xuan, Tongtong; Zhao, Haiyan; Dong, Haorui; Cheng, Xinru; Wang, Le; Xie, Rong-Jun (September 2023). "Perovskite Light-Emitting Diodes with an External Quantum Efficiency Exceeding 30%". Advanced Materials. 35 (39): e2302283. Bibcode:2023AdM....3502283B. doi:10.1002/adma.202302283. ISSN   0935-9648. PMID   37246938. S2CID   258959858.
  3. 1 2 Sun, Changjiu; Jiang, Yuanzhi; Cui, Minghuan; Qiao, Lu; Wei, Junli; Huang, Yanmin; Zhang, Li; He, Tingwei; Li, Saisai; Hsu, Hsien-Yi; Qin, Chaochao; Long, Run; Yuan, Mingjian (2021-04-13). "High-performance large-area quasi-2D perovskite light-emitting diodes". Nature Communications. 12 (1): 2207. Bibcode:2021NatCo..12.2207S. doi:10.1038/s41467-021-22529-x. ISSN   2041-1723. PMC   8044177 . PMID   33850141.
  4. 1 2 Zhou, Wei; Shen, Yang; Cao, Long-Xue; Lu, Yu; Tang, Ying-Yi; Zhang, Kai; Ren, Hao; Xie, Feng-Ming; Li, Yan-Qing; Tang, Jian-Xin (July 2023). "Manipulating Ionic Behavior with Bifunctional Additives for Efficient Sky-Blue Perovskite Light-Emitting Diodes". Advanced Functional Materials. 33 (27). doi:10.1002/adfm.202301425. ISSN   1616-301X. S2CID   257609652.
  5. 1 2 Chen, Ziming; Li, Zhenchao; Chen, Zhen; Xia, Ruoxi; Zou, Guangruixing; Chu, Linghao; Su, Shi-Jian; Peng, Junbiao; Yip, Hin-Lap; Cao, Yong (February 2021). "Utilization of Trapped Optical Modes for White Perovskite Light-Emitting Diodes with Efficiency over 12%". Joule. 5 (2): 456–466. Bibcode:2021Joule...5..456C. doi: 10.1016/j.joule.2020.12.008 . ISSN   2542-4351. S2CID   233896421.
  6. Feng, Wenjing; Lin, Kebin; Li, Wenqiang; Xiao, Xiangtian; Lu, Jianxun; Yan, Chuanzhong; Liu, Xinyi; Xie, Liqiang; Tian, Chengbo; Wu, Dan; Wang, Kai; Wei, Zhanhua (2021-05-04). "Efficient all-inorganic perovskite light-emitting diodes enabled by manipulating the crystal orientation". Journal of Materials Chemistry A. 9 (17): 11064–11072. doi:10.1039/D1TA00093D. ISSN   2050-7496. S2CID   234226202.
  7. 1 2 3 Liu, Yuan; Dong, Yitong; Zhu, Tong; Ma, Dongxin; Proppe, Andrew; Chen, Bin; Zheng, Chao; Hou, Yi; Lee, Seungjin; Sun, Bin; Jung, Eui Hyuk; Yuan, Fanglong; Wang, Ya-kun; Sagar, Laxmi Kishore; Hoogland, Sjoerd (2021-09-29). "Bright and Stable Light-Emitting Diodes Based on Perovskite Quantum Dots in Perovskite Matrix". Journal of the American Chemical Society. 143 (38): 15606–15615. doi:10.1021/jacs.1c02148. ISSN   0002-7863. PMID   34542273. S2CID   237574321.