Petzval field curvature

Last updated
Field curvature: the image "plane" (the arc) deviates from a flat surface (the vertical line). Field curvature.svg
Field curvature: the image "plane" (the arc) deviates from a flat surface (the vertical line).

Petzval field curvature, named for Joseph Petzval, [1] describes the optical aberration in which a flat object normal to the optical axis (or a non-flat object past the hyperfocal distance) cannot be brought properly into focus on a flat image plane.[ citation needed ] Field curvature can be corrected with the use of a field flattener , designs can also incorporate a curved focal plane like in the case of the human eye in order to improve image quality at the focal surface.

Contents

Analysis

The image-sensor array of the Kepler space observatory is curved to compensate for the telescope's Petzval curvature. Keplerspacecraft-FocalPlane-cutout.svg
The image-sensor array of the Kepler space observatory is curved to compensate for the telescope's Petzval curvature.

Consider an "ideal" single-element lens system for which all planar wave fronts are focused to a point at distance f from the lens. Placing this lens the distance f from a flat image sensor, image points near the optical axis will be in perfect focus, but rays off axis will come into focus before the image sensor, dropping off by the cosine of the angle they make with the optical axis. This is less of a problem when the imaging surface is spherical, as in the human eye.

Most current photographic lenses are designed to minimize field curvature, and so effectively have a focal length that increases with ray angle. Lenses of short focal lengths (ultra wide, wide and normal) below 50 mm typically suffer more from field curvature. Telephoto lenses typically have very little or no visible field curvature. [2] The Petzval lens is one design which has significant field curvature; images taken with the lens are very sharp in the centre, but at greater angles the image is out of focus. Film cameras may be able to bend their image planes to compensate, particularly when the lens is fixed and known. This also includes plate film, which could still be bent slightly. Digital sensors are difficult to bend, although experimental products have been produced. [3] By 2016 the only consumer cameras featuring curved sensors were "selfie" Sony Cybershot KW-1 and KW-11.[ citation needed ] Large mosaics of sensors (necessary anyway due to limited chip sizes) can be shaped to simulate a bend over larger scales.[ citation needed ]

The Petzval field curvature is equal to the Petzval sum over an optical system,

where is the radius of the ith surface and the ns are the indices of refraction on the first and second side of the surface. [4] Petzval curvature of a spherical mirror is double of its curvature and Petzval radius of a mirror is equal to its focal length.

Reduction of field curvature aberration

The primary way to control this aberration is by inserting further optical elements which counteract the curved focal plane off axis. This is especially important for wide-angle lens designs since this aberration is an exponential function of angle off axis

Ironically, the two groups in a Petzval portrait lens are primarily intended to control spherical aberration and coma, but actually make field curvature worse. This tradeoff was desirable because for a long focus lens better correction of spherical aberration and coma permits a faster aperture setting, which is more important than any defect of field curvature since long focus lenses have a narrow angle of view.

An aperture stop (iris) reduces the effect of field curvature by reducing the circle of confusion, but does not actually affect the curvature of the focal plane. Using a small aperture to limit the effect of field curvature greatly decreases the light collecting power of the lens. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Optical aberration</span> Deviation from perfect paraxial optical behavior

In optics, aberration is a property of optical systems, such as lenses, that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics. In an imaging system, it occurs when light from one point of an object does not converge into a single point after transmission through the system. Aberrations occur because the simple paraxial theory is not a completely accurate model of the effect of an optical system on light, rather than due to flaws in the optical elements.

<span class="mw-page-title-main">Lens</span> Optical device which transmits and refracts light

A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic and are ground, polished, or molded to the required shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called "lenses", such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a system converges light, while a negative focal length indicates that the system diverges light. A system with a shorter focal length bends the rays more sharply, bringing them to a focus in a shorter distance or diverging them more quickly. For the special case of a thin lens in air, a positive focal length is the distance over which initially collimated (parallel) rays are brought to a focus, or alternatively a negative focal length indicates how far in front of the lens a point source must be located to form a collimated beam. For more general optical systems, the focal length has no intuitive meaning; it is simply the inverse of the system's optical power.

<span class="mw-page-title-main">Ritchey–Chrétien telescope</span> Specialized Cassegrain telescope

A Ritchey–Chrétien telescope is a specialized variant of the Cassegrain telescope that has a hyperbolic primary mirror and a hyperbolic secondary mirror designed to eliminate off-axis optical errors (coma). The RCT has a wider field of view free of optical errors compared to a more traditional reflecting telescope configuration. Since the mid 20th century, a majority of large professional research telescopes have been Ritchey–Chrétien configurations; some well-known examples are the Hubble Space Telescope, the Keck telescopes and the ESO Very Large Telescope.

<span class="mw-page-title-main">Spherical aberration</span> Optical aberration

In optics, spherical aberration (SA) is a type of aberration found in optical systems that have elements with spherical surfaces. Lenses and curved mirrors are prime examples, because this shape is easier to manufacture. Light rays that strike a spherical surface off-centre are refracted or reflected more or less than those that strike close to the centre. This deviation reduces the quality of images produced by optical systems. The effect of spherical aberration was first identified by Ibn al-Haytham who discussed it in his work Kitāb al-Manāẓir.

<span class="mw-page-title-main">Reflecting telescope</span> Telescopes which utilize curved mirrors to form an image

A reflecting telescope is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternative to the refracting telescope which, at that time, was a design that suffered from severe chromatic aberration. Although reflecting telescopes produce other types of optical aberrations, it is a design that allows for very large diameter objectives. Almost all of the major telescopes used in astronomy research are reflectors. Many variant forms are in use and some employ extra optical elements to improve image quality or place the image in a mechanically advantageous position. Since reflecting telescopes use mirrors, the design is sometimes referred to as a catoptric telescope.

<span class="mw-page-title-main">Newtonian telescope</span> Type of reflecting telescope

The Newtonian telescope, also called the Newtonian reflector or just a Newtonian, is a type of reflecting telescope invented by the English scientist Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. Newton's first reflecting telescope was completed in 1668 and is the earliest known functional reflecting telescope. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.

<span class="mw-page-title-main">Schmidt camera</span> Astrophotographic telescope

A Schmidt camera, also referred to as the Schmidt telescope, is a catadioptric astrophotographic telescope designed to provide wide fields of view with limited aberrations. The design was invented by Bernhard Schmidt in 1930.

<span class="mw-page-title-main">Wavefront</span> Locus of points at equal phase in a wave

In physics, the wavefront of a time-varying wave field is the set (locus) of all points having the same phase. The term is generally meaningful only for fields that, at each point, vary sinusoidally in time with a single temporal frequency.

<span class="mw-page-title-main">Catadioptric system</span> Optical system where refraction and reflection are combined

A catadioptric optical system is one where refraction and reflection are combined in an optical system, usually via lenses (dioptrics) and curved mirrors (catoptrics). Catadioptric combinations are used in focusing systems such as searchlights, headlamps, early lighthouse focusing systems, optical telescopes, microscopes, and telephoto lenses. Other optical systems that use lenses and mirrors are also referred to as "catadioptric", such as surveillance catadioptric sensors.

<span class="mw-page-title-main">Maksutov telescope</span> Catadioptric telescope design

The Maksutov is a catadioptric telescope design that combines a spherical mirror with a weakly negative meniscus lens in a design that takes advantage of all the surfaces being nearly "spherically symmetrical". The negative lens is usually full diameter and placed at the entrance pupil of the telescope. The design corrects the problems of off-axis aberrations such as coma found in reflecting telescopes while also correcting chromatic aberration. It was patented in 1941 by Russian optician Dmitri Dmitrievich Maksutov. Maksutov based his design on the idea behind the Schmidt camera of using the spherical errors of a negative lens to correct the opposite errors in a spherical primary mirror. The design is most commonly seen in a Cassegrain variation, with an integrated secondary, that can use all-spherical elements, thereby simplifying fabrication. Maksutov telescopes have been sold on the amateur market since the 1950s.

<span class="mw-page-title-main">Large format lens</span>

Large format lenses are photographic optics that provide an image circle large enough to cover the large format film or plates used in large format cameras.

<span class="mw-page-title-main">Aspheric lens</span> Type of lens

An aspheric lens or asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

<span class="mw-page-title-main">Curved mirror</span> Mirror with a curved reflecting surface

A curved mirror is a mirror with a curved reflecting surface. The surface may be either convex or concave. Most curved mirrors have surfaces that are shaped like part of a sphere, but other shapes are sometimes used in optical devices. The most common non-spherical type are parabolic reflectors, found in optical devices such as reflecting telescopes that need to image distant objects, since spherical mirror systems, like spherical lenses, suffer from spherical aberration. Distorting mirrors are used for entertainment. They have convex and concave regions that produce deliberately distorted images. They also provide highly magnified or highly diminished (smaller) images when the object is placed at certain distances.

In astrophotography, the Wright camera design, presented by Franklin Wright in 1935, just a few years after the introduction of the Schmidt camera, was his "short" alternative to the original arrangement.

Field flattener lens is a type of lens used in modern binocular designs and in astronomic telescopes to improve edge sharpness. Field flattener lenses counteract the Petzval field curvature of an optical system, mitigating the field-angle dependence of the focal length of a system.

The design of photographic lenses for use in still or cine cameras is intended to produce a lens that yields the most acceptable rendition of the subject being photographed within a range of constraints that include cost, weight and materials. For many other optical devices such as telescopes, microscopes and theodolites where the visual image is observed but often not recorded the design can often be significantly simpler than is the case in a camera where every image is captured on film or image sensor and can be subject to detailed scrutiny at a later stage. Photographic lenses also include those used in enlargers and projectors.

The study of image formation encompasses the radiometric and geometric processes by which 2D images of 3D objects are formed. In the case of digital images, the image formation process also includes analog to digital conversion and sampling.

<span class="mw-page-title-main">Three-mirror anastigmat</span> Reflecting telescope design

A three-mirror anastigmat is an anastigmat telescope built with three curved mirrors, enabling it to minimize all three main optical aberrations – spherical aberration, coma, and astigmatism. This is primarily used to enable wide fields of view, much larger than possible with telescopes with just one or two curved surfaces.

References

  1. Riedl, Max J. (2001). Optical Design Fundamentals for Infrared Systems. SPIE Press. pp. 40–. ISBN   9780819440518 . Retrieved 3 November 2012.
  2. Mansurov, Nasim (February 12, 2018). "What is Field Curvature?". photographylife.com. Retrieved April 28, 2018.
  3. Sanyal, Rishi (June 18, 2014). "Sony's curved sensors may allow for simpler lenses and better images". Digital Photography Review. Retrieved April 28, 2018.
  4. Kingslake, Rudolf (1989). A History of the Photographic Lens. Academic Press. pp. 4–. ISBN   9780124086401 . Retrieved 3 November 2012.
  5. "Lens aberrations: field curvature". microscopy.berkeley.edu. Archived from the original on 2004-09-05. Retrieved 2016-07-23.