Phoenix (nuclear technology company)

Last updated
Phoenix
Type LLC
Industry Energy, Medical, Defense
Founded2005
FounderGreg Piefer [1]
Headquarters
Key people
Greg Piefer, Ross Radel [1]
Number of employees
30-40
Website phoenixwi.com

Phoenix, formerly known as Phoenix Nuclear Labs, is a company specializing in neutron generator technology located in Monona, Wisconsin. Founded in 2005, the company develops nuclear and particle accelerator technologies for application in medicine, defense and energy. Phoenix has held contracts with the U.S. Army, the U.S. Department of Energy, the U.S. Department of Defense and the U.S. Air Force. Phoenix developed a proprietary gas target neutron generator technology and has designed and built a number of particle accelerator-related technologies.

Contents

Corporate history

Phoenix Nuclear Labs was founded in 2005 by Dr. Gregory Piefer after he completed his PhD in Nuclear Engineering from the University of Wisconsin-Madison. [2] Dr. Ross Radel, who joined the company in 2010, became the company president in July 2011. [1] Retired Apollo 17 astronaut Harrison Schmitt is on the company's scientific advisory board. [1]

In February 2014, Phoenix Nuclear Labs signed its first commercial contract to build a thermal neutron generation system for Ultra Electronics' Nuclear Control Systems, a British company that specializes in defense and security, transport and energy. [3] [4]

In April 2014, Phoenix Nuclear Labs was awarded $1 million from the U.S. Department of Energy to design a high-current negative hydrogen ion source under the SBIR Phase II project. [5] [6]

In August 2014, Phoenix Nuclear Labs and SHINE Medical Technologies successfully operated the second-generation neutron driver prototype for 24 consecutive hours with a 99% uptime. The test was said to be a key milestone towards the production of medical isotopes such as molybdenum-99 (parent isotope of the medically useful nuclear isomer 99m
Tc
). SHINE plans to start production at a facility in Janesville, WI in 2017. [7]

In October 2014, Phoenix Nuclear Labs announced that it was awarded a $3 million contract by the U.S. Army to develop an advanced neutron radiography imaging system. The second-generation version will be sent to Picatinny Arsenal, a military facility in New Jersey, as an upgrade to one they sent in 2013. [8]

Products

In October 2012, Phoenix Nuclear Labs received two contracts from the U.S. Army. The first contract was a $879,000 Small Business Innovation Research (SBIR) Phase II grant to help the company construct a high-flux neutron generator for the purpose of sensing improvised explosive devices (IED). The second contract was a $100,000 SBIR Phase I grant to design a neutron source for White Sands Missile Range in New Mexico. This source would be used to test the radiation resistance of military equipment and equipment to be exposed to radiation in space as an alternative to current testing methods that use highly enriched uranium. [9] In May 2012, the company had also raised funds to develop the neutron generator. [10]

In 2014, Phoenix Nuclear Labs also announced a successful preliminary test on the detection of 'undetectable explosives', by sensing the explosives materials instead of metal components. [11]

Medical isotope production

Phoenix Nuclear Labs developed[ when? ] a proprietary gas target neutron generator technology and has designed and built a number of particle accelerator-related technologies. It has the technology to produce 3×1011 neutrons per second with the deuterium-deuterium fusion reaction. [12] This can be sustained for a 24-hour period. Their spin-off company, SHINE Medical Technologies [13] plans to open a facility for the mass production of Mo-99, an isotope used for medical care. [14]

Molybdenum decays into technetium-99m, which is used in over 40,000 medical imaging procedures everyday in the US. Over 80% of nuclear medicine procedures rely on molybdenum to detect cancer and diagnose heart disease, among hundreds of other procedures utilizing this isotope. [15] The U.S. obtains all of its molybdenum (representing about half of global demand) from the aging nuclear reactors outside of the U.S. However, many of these reactors are scheduled to be shut down and they furthermore utilize highly enriched uranium (HEU), which the US considers a nuclear weapons proliferation threat. [16] To avoid the security concern of HEU, the accelerator-driven, low-enriched uranium (LEU) solution becomes the target for high-efficiency isotope production. [17] The neutrons generated by the PNL neutron generator drive fission in a subcritical LEU solution. The LEU solution is irradiated for approximately a week and medical isotopes are then extracted from the solution, purified using established techniques and packaged for sale. The LEU solution is then recycled, achieving extremely efficient[ clarification needed ] use of uranium and producing much less waste than current molybdenum production methods.

The company's neutron generators have been demonstrated to achieve over 1,000 hours of operation. The process produces medical isotopes that fit into existing supply chains while eliminating the use of weapons-grade uranium and reliance on aging nuclear reactors. [15] For example, the Canadian National Research Universal reactor (NRU) in Chalk River, Ontario currently produces these medical isotopes. In 2006, it produced two-thirds of the world's technetium-99m. [18] A 2009 shutdown of the NRU threatened to delay medical tests for cancer patients. [19] Prior to the 2009 shutdown the NRU produced nearly half of the world's supply of medical isotopes. [20]

Related Research Articles

<span class="mw-page-title-main">Technetium</span> Chemical element, symbol Tc and atomic number 43

Technetium is a chemical element with the symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous fission product in uranium ore and thorium ore, the most common source, or the product of neutron capture in molybdenum ores. This silvery gray, crystalline transition metal lies between manganese and rhenium in group 7 of the periodic table, and its chemical properties are intermediate between those of both adjacent elements. The most common naturally occurring isotope is 99Tc, in traces only.

Enriched uranium is a type of uranium in which the percent composition of uranium-235 has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238, uranium-235, and uranium-234. 235U is the only nuclide existing in nature that is fissile with thermal neutrons.

A synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. Examples include technetium-95 and promethium-146. Many of these are found in, and harvested from, spent nuclear fuel assemblies. Some must be manufactured in particle accelerators.

<span class="mw-page-title-main">Nuclear fuel cycle</span> Process of manufacturing and consuming nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enriched uranium (LEU) fuel used in the light-water reactors that predominate nuclear power generation.

<span class="mw-page-title-main">Chalk River Laboratories</span> Nuclear research facility located near Chalk River, Canada

Chalk River Laboratories is a Canadian nuclear research facility in Deep River, about 180 km (110 mi) north-west of Ottawa.

<span class="mw-page-title-main">Neutron generator</span> Source of neutrons from linear particle accelerators

Neutron generators are neutron source devices which contain compact linear particle accelerators and that produce neutrons by fusing isotopes of hydrogen together. The fusion reactions take place in these devices by accelerating either deuterium, tritium, or a mixture of these two isotopes into a metal hydride target which also contains deuterium, tritium or a mixture of these isotopes. Fusion of deuterium atoms results in the formation of a helium-3 ion and a neutron with a kinetic energy of approximately 2.5 MeV. Fusion of a deuterium and a tritium atom results in the formation of a helium-4 ion and a neutron with a kinetic energy of approximately 14.1 MeV. Neutron generators have applications in medicine, security, and materials analysis.

Atomic Energy of Canada Limited (AECL) is a Canadian federal Crown corporation and Canada's largest nuclear science and technology laboratory. AECL developed the CANDU reactor technology starting in the 1950s, and in October 2011 licensed this technology to Candu Energy.

<span class="mw-page-title-main">Technetium-99m generator</span> A device used to extract the short-lived radioactive isotope Tc-99m from a longer-lived Mo-99 source

A technetium-99m generator, or colloquially a technetium cow or moly cow, is a device used to extract the metastable isotope 99mTc of technetium from a decaying sample of molybdenum-99. 99Mo has a half-life of 66 hours and can be easily transported over long distances to hospitals where its decay product technetium-99m is extracted and used for a variety of nuclear medicine diagnostic procedures, where its short half-life is very useful.

<span class="mw-page-title-main">Nuclear fuel</span> Material used in nuclear power stations

Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission.

Uranium (92U) is a naturally occurring radioactive element that has no stable isotope. It has two primordial isotopes, uranium-238 and uranium-235, that have long half-lives and are found in appreciable quantity in the Earth's crust. The decay product uranium-234 is also found. Other isotopes such as uranium-233 have been produced in breeder reactors. In addition to isotopes found in nature or nuclear reactors, many isotopes with far shorter half-lives have been produced, ranging from 214U to 242U. The standard atomic weight of natural uranium is 238.02891(3).

Molybdenum (42Mo) has 33 known isotopes, ranging in atomic mass from 83 to 115, as well as four metastable nuclear isomers. Seven isotopes occur naturally, with atomic masses of 92, 94, 95, 96, 97, 98, and 100. All unstable isotopes of molybdenum decay into isotopes of zirconium, niobium, technetium, and ruthenium.

<span class="mw-page-title-main">Aqueous homogeneous reactor</span> Type of nuclear reactor

Aqueous homogeneous reactors (AHR) are a type of nuclear reactor in which soluble nuclear salts are dissolved in water. The fuel is mixed with the coolant and the moderator, thus the name "homogeneous". The water can be either heavy water or ordinary (light) water, both of which need to be very pure.

The National Research Universal (NRU) reactor was a 135 MW nuclear research reactor built in the Chalk River Laboratories, Ontario, one of Canada’s national science facilities. It was a multipurpose science facility that served three main roles. It generated radionuclides used to treat or diagnose over 20 million people in 80 countries every year. It was the neutron source for the NRC Canadian Neutron Beam Centre: a materials research centre that grew from the Nobel Prize-winning work of Bertram Brockhouse. It was the test bed for Atomic Energy of Canada Limited to develop fuels and materials for the CANDU reactor. At the time of its retirement on March 31, 2018, it was the world's oldest operating nuclear reactor.

<span class="mw-page-title-main">Pakistan Institute of Nuclear Science & Technology</span> National research institute and national laboratory site

The Pakistan Institute of Nuclear Science & Technology (PINSTECH) is a federally funded multiprogram science and technology research institute managed for the Ministry of Energy by the Pakistan Institute of Engineering and Applied Sciences (PIEAS).

<span class="mw-page-title-main">Technetium-99m</span> Metastable nuclear isomer of technetium-99

Technetium-99m (99mTc) is a metastable nuclear isomer of technetium-99, symbolized as 99mTc, that is used in tens of millions of medical diagnostic procedures annually, making it the most commonly used medical radioisotope in the world.

<span class="mw-page-title-main">Maria reactor</span>

The Maria reactor is Poland's second nuclear research reactor and is the only one still in use. It is located at Narodowe Centrum Badań Jądrowych (NCBJ) at Świerk-Otwock, near Warsaw and named in honor of Maria Skłodowska-Curie. It is the only reactor of Polish design.

<span class="mw-page-title-main">Pakistan Atomic Research Reactor</span>

The Pakistan Atomic Research Reactor or (PARR) are two nuclear research reactors and two other experimental neutron sources located in the PINSTECH Laboratory, Nilore, Islamabad, Pakistan.

Shine Technologies, formerly named SHINE Medical Technologies, is a private corporation based in Janesville, Wisconsin. As of February 2016, the company was planning to build a facility to produce radioactive isotopes for medical applications.

Radioisotopes Production Facility (RPF), is a facility for the production of radioisotopes from irradiation of Low enriched uranium (LEU) in the Egyptian Second Research Reactor (ETRR-2) Complex. The RPF was supplied by the Argentine company Investigacion Aplicada (INVAP) and was commissioned during October and November 2011. The produced radioisotopes are used in medicine, industry and research activities for domestic market.

References

  1. 1 2 3 4 "About". Phoenix Nuclear Labs.
  2. Leute, Jim (October 11, 2014). "SHINE supplier wins contract". Gazette. Janesville, WI. Archived from the original on October 12, 2014.
  3. Content, Thomas (2014-02-25). "Phoenix Nuclear Labs lands contract with British facility". Journal Sentinel. Milwaukee, WI.
  4. Newman, Judy (2014-02-25). "Phoenix Nuclear Labs makes its first commercial sale". Wisconsin State Journal. Madison, WI.
  5. Newman, Judy (2014-04-26). "Tech and Biotech: Phoenix Nuclear Labs gets funds for 'cutting-edge' project; texting takes a novel twist with buzzMSG". Wisconsin State Journal. Madison, WI.
  6. "Phoenix Nuclear Labs: Awarded one million dollar grant from the U.S. Department of Energy". wisbusiness.com / PR Newswire . 2014-04-23.
  7. "SHINE Medical and Phoenix Nuclear achieve key technical milestone with 24-hour accelerator test". DOTmed News. 2014-08-08.
  8. "PNL awarded $3 million Army contract". KYTX CBS 19. 2014-10-06. Archived from the original on 2014-10-12.
  9. Newman, Judy (2012-10-23). "Phoenix Nuclear Labs gets 2 Army contracts". Wisconsin State Journal. Madison, WI.
  10. Newman, Judy (2012-05-26). "Tech and Biotech: Phoenix Nuclear Labs lands funds to build neutron machines". Wisconsin State Journal. Madison, WI.
  11. Newman, Judy (2014-07-07). "Phoenix Nuclear Labs develops system to detect hard-to-find explosives". Wisconsin State Journal. Madison, WI.
  12. Radel, Ross; Sengbusch, Evan (2013-05-01). "Phoenix Nuclear Labs meets neutron production milestone" (PDF). PNL press release.
  13. "SHINE Medical Technologies". SHINE Medical Technologies. 2014-08-14. Retrieved 2014-08-14.
  14. "SHINE Medical Technologies to supply MOLY‐99 to GE Healthcare" (PDF). Phoenix Nuclear Labs. 2014-04-03. Retrieved 2014-07-12.
  15. 1 2 "SHINE brings a light of hope to cancer and heart patient". In Business Madison. 8 August 2012.
  16. "NNSA Signs Cooperative Agreement to Support the Production of Molybdenum-99 in the United States Without the Use of Highly Enriched Uranium". National Nuclear Security Administration (NNSA).
  17. "Encouraging Reliable Supplies of Molybdenum-99 Produced without Highly Enriched Uranium". whitehouse.gov . 7 June 2012 via National Archives.
  18. "NRC's Diamond in the Rough". National Research Council of Canada. 2006-06-05.
  19. "Isotope shortage could delay cancer tests". The Seattle Times. 2009-05-19.
  20. "Solving Canada's medical isotope crisis". National Research Council of Canada. 2011-01-24.