Photosynthetic pigment

Last updated
Electromagnetic spectrum - wavelengths in metres Electromagnetic spectrum 2.jpg
Electromagnetic spectrum – wavelengths in metres

A photosynthetic pigment (accessory pigment; chloroplast pigment; antenna pigment) is a pigment that is present in chloroplasts or photosynthetic bacteria and captures the light energy necessary for photosynthesis.

Contents

List of photosynthetic pigments (in order of increasing polarity):

Chlorophyll a is the most common of the six, present in every plant that performs photosynthesis. Each pigment absorbs light more efficiently in a different part of the electromagnetic spectrum. Chlorophyll a absorbs well in the ranges of 400–450 nm and at 650–700 nm; chlorophyll b at 450–500 nm and at 600–650 nm. Xanthophyll absorbs well at 400–530 nm. However, none of the pigments [2] [3] absorb well in the green-yellow region; the diffuse reflection of the unabsorbed green light is responsible for the abundant green seen in nature.

Bacteria

Like plants, the cyanobacteria use water as an electron donor for photosynthesis and therefore liberate oxygen; they also use chlorophyll as a pigment. In addition, most cyanobacteria use phycobiliproteins, water-soluble pigments which occur in the cytoplasm of the chloroplast, to capture light energy and pass it on to the chlorophylls. (Some cyanobacteria, the prochlorophytes, use chlorophyll b instead of phycobilin.) It is thought that the chloroplasts in plants and algae all evolved from cyanobacteria.

Several other groups of bacteria use the bacteriochlorophyll pigments (similar to the chlorophylls) for photosynthesis. Unlike the cyanobacteria, these bacteria do not produce oxygen; they typically use hydrogen sulfide rather than water as the electron donor.

Recently, a very different pigment has been found in some marine Gammaproteobacteria: proteorhodopsin. It is similar to and probably originated from bacteriorhodopsin (see below: under #Archaea).

Archaea

Halobacteria use the pigment bacteriorhodopsin which acts directly as a proton pump when exposed to light.

Related Research Articles

<span class="mw-page-title-main">Chlorophyll</span> Green pigments found in plants, algae and bacteria

Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words χλωρός, khloros and φύλλον, phyllon ("leaf"). Chlorophyll allows plants to absorb energy from light.

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their activities. Photosynthetic organisms use intracellular organic compounds to store the chemical energy they produce in photosynthesis within organic compounds like sugars, glycogen, cellulose and starches. Photosynthesis is usually used to refer to oxygenic photosynthesis, a process that produces oxygen. To use this stored chemical energy, the organisms' cells metabolize the organic compounds through another process called cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.

<span class="mw-page-title-main">Thylakoid</span> Membrane enclosed compartments in chloroplasts and cyanobacteria

Thylakoids are membrane-bound compartments inside chloroplasts and cyanobacteria. They are the site of the light-dependent reactions of photosynthesis. Thylakoids consist of a thylakoid membrane surrounding a thylakoid lumen. Chloroplast thylakoids frequently form stacks of disks referred to as grana. Grana are connected by intergranal or stromal thylakoids, which join granum stacks together as a single functional compartment.

Fucoxanthin is a xanthophyll, with formula C42H58O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm.

<span class="mw-page-title-main">Photosystem</span> Structural units of protein involved in photosynthesis

Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons. Photosystems are found in the thylakoid membranes of plants, algae, and cyanobacteria. These membranes are located inside the chloroplasts of plants and algae, and in the cytoplasmic membrane of photosynthetic bacteria. There are two kinds of photosystems: PSI and PSII.

<span class="mw-page-title-main">Photosystem I</span> Second protein complex in photosynthetic light reactions

Photosystem I is one of two photosystems in the photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH. The photon energy absorbed by Photosystem I also produces a proton-motive force that is used to generate ATP. PSI is composed of more than 110 cofactors, significantly more than Photosystem II.

Chlorophyll <i>a</i> Chemical compound

Chlorophyll a is a specific form of chlorophyll used in oxygenic photosynthesis. It absorbs most energy from wavelengths of violet-blue and orange-red light, and it is a poor absorber of green and near-green portions of the spectrum. Chlorophyll does not reflect light but chlorophyll-containing tissues appear green because green light is diffusively reflected by structures like cell walls. This photosynthetic pigment is essential for photosynthesis in eukaryotes, cyanobacteria and prochlorophytes because of its role as primary electron donor in the electron transport chain. Chlorophyll a also transfers resonance energy in the antenna complex, ending in the reaction center where specific chlorophylls P680 and P700 are located.

<span class="mw-page-title-main">Phototroph</span> Organism using energy from light in metabolic processes

Phototrophs are organisms that carry out photon capture to produce complex organic compounds and acquire energy. They use the energy from light to carry out various cellular metabolic processes. It is a common misconception that phototrophs are obligatorily photosynthetic. Many, but not all, phototrophs often photosynthesize: they anabolically convert carbon dioxide into organic material to be utilized structurally, functionally, or as a source for later catabolic processes. All phototrophs either use electron transport chains or direct proton pumping to establish an electrochemical gradient which is utilized by ATP synthase, to provide the molecular energy currency for the cell. Phototrophs can be either autotrophs or heterotrophs. If their electron and hydrogen donors are inorganic compounds they can be also called lithotrophs, and so, some photoautotrophs are also called photolithoautotrophs. Examples of phototroph organisms are Rhodobacter capsulatus, Chromatium, and Chlorobium.

Accessory pigments are light-absorbing compounds, found in photosynthetic organisms, that work in conjunction with chlorophyll a. They include other forms of this pigment, such as chlorophyll b in green algal and vascular ("higher") plant antennae, while other algae may contain chlorophyll c or d. In addition, there are many non-chlorophyll accessory pigments, such as carotenoids or phycobiliproteins, which also absorb light and transfer that light energy to photosystem chlorophyll. Some of these accessory pigments, in particular the carotenoids, also serve to absorb and dissipate excess light energy, or work as antioxidants. The large, physically associated group of chlorophylls and other accessory pigments is sometimes referred to as a pigment bed.

<span class="mw-page-title-main">Light-harvesting complexes of green plants</span> Component of photosynthesis

The light-harvesting complex is an array of protein and chlorophyll molecules embedded in the thylakoid membrane of plants and cyanobacteria, which transfer light energy to one chlorophyll a molecule at the reaction center of a photosystem.

Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by absorption of light or photons. It is defined as the interaction of one or more photons with one target molecule that dissociates into two fragments.

<span class="mw-page-title-main">Photosynthetic reaction centre</span> Molecular unit responsible for absorbing light in photosynthesis

A photosynthetic reaction center is a complex of several proteins, pigments, and other co-factors that together execute the primary energy conversion reactions of photosynthesis. Molecular excitations, either originating directly from sunlight or transferred as excitation energy via light-harvesting antenna systems, give rise to electron transfer reactions along the path of a series of protein-bound co-factors. These co-factors are light-absorbing molecules (also named chromophores or pigments) such as chlorophyll and pheophytin, as well as quinones. The energy of the photon is used to excite an electron of a pigment. The free energy created is then used, via a chain of nearby electron acceptors, for a transfer of hydrogen atoms (as protons and electrons) from H2O or hydrogen sulfide towards carbon dioxide, eventually producing glucose. These electron transfer steps ultimately result in the conversion of the energy of photons to chemical energy.

A light-harvesting complex consists of a number of chromophores which are complex subunit proteins that may be part of a larger super complex of a photosystem, the functional unit in photosynthesis. It is used by plants and photosynthetic bacteria to collect more of the incoming light than would be captured by the photosynthetic reaction center alone. The light which is captured by the chromophores is capable of exciting molecules from their ground state to a higher energy state, known as the excited state. This excited state does not last very long and is known to be short-lived.

The photosynthetic efficiency is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. Photosynthesis can be described by the simplified chemical reaction

<span class="mw-page-title-main">Biological pigment</span> Substances produced by living organisms

Biological pigments, also known simply as pigments or biochromes, are substances produced by living organisms that have a color resulting from selective color absorption. Biological pigments include plant pigments and flower pigments. Many biological structures, such as skin, eyes, feathers, fur and hair contain pigments such as melanin in specialized cells called chromatophores. In some species, pigments accrue over very long periods during an individual's lifespan.

<span class="mw-page-title-main">Purple Earth hypothesis</span> Astrobiological hypothesis regarding early photosynethetic organisms

The Purple Earth Hypothesis (PEH) is an astrobiological hypothesis, first proposed by molecular biologist Shiladitya DasSarma in 2007, that the earliest photosynthetic life forms of Early Earth were based on the simpler molecule retinal rather than the more complex porphyrin-based chlorophyll, making the surface biosphere appear purplish rather than its current greenish color. It is estimated to have occurred between 3.5 and 2.4 billion years ago during the Archean eon, prior to the Great Oxygenation Event and Huronian glaciation.

<span class="mw-page-title-main">Light-dependent reactions</span> Photosynthetic reactions

Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).

<span class="mw-page-title-main">Anoxygenic photosynthesis</span> Process used by obligate anaerobes

Anoxygenic photosynthesis is a special form of photosynthesis used by some bacteria and archaea, which differs from the better known oxygenic photosynthesis in plants in the reductant used and the byproduct generated.

The evolution of photosynthesis refers to the origin and subsequent evolution of photosynthesis, the process by which light energy is used to assemble sugars from carbon dioxide and a hydrogen and electron source such as water. It is believed that the pigments used for photosynthesis initially were used for protection from the harmful effects of light, particularly ultraviolet light. The process of photosynthesis was discovered by Jan Ingenhousz, a Dutch-born British physician and scientist, first publishing about it in 1779.

<span class="mw-page-title-main">Photoautotrophism</span> Organisms that use light and inorganic carbon to produce organic materials

Photoautotrophs are organisms that can utilize light energy from sunlight and elements from inorganic compounds to produce organic materials needed to sustain their own metabolism. This biological activity is known as photosynthesis, and examples of such photosynthetic organisms include plants, algae and cyanobacteria.

References

  1. 1 2 CHLOROPHYLLS, JECFA, 1987
  2. Virtanen, Olli; Constantinidou, Emanuella; Tyystjarvi, Esa (2022). "Chlorophyll does not reflect green light – how to correct a misconception". Journal of Biological Education. 56 (5). Taylor & Francis Online: 552–559. doi:10.1080/00219266.2020.1858930 . Retrieved 26 January 2024.
  3. Gruszecki, Wieslaw; Grudzinski, Wojciech; Banaszek-Glos, Agnieszka; Matula, Magdalena; Kernen, Peter; Krupa, Zbigniew; Sielewiesiuk, Jan. "Xanthophyll pigments in light-harvesting complex II in monomolecular layers: localisation, energy transfer and orientation" (PDF). Connecting Repositories. Elservier. PMID   10393259. Archived from the original (PDF) on 2019-04-19. Retrieved 27 January 2024.