Pill (textile)

Last updated
Pills on a knit fabric Pilling.jpg
Pills on a knit fabric

A pill, colloquially known as a bobble, fuzzball, or lint ball, is a small ball of fibers that forms on a piece of cloth. Pill is also a verb for the formation of such balls. [1] [2]

Contents

Pilling is a surface defect of textiles caused by wear, and is generally considered an undesirable trait. [3] It happens when washing and wearing of fabrics causes loose fibers to begin to push out from the surface of the cloth, and, over time, abrasion causes the fibers to develop into small spherical bundles, anchored to the surface of the fabric by protruding fibers that have not broken. The textile industry divides pilling into four stages: fuzz formation, entanglement, growth, and wear-off. [4]

Pilling normally happens on the parts of clothing that receive the most abrasion in day-to-day wear, such as the collar, cuffs, and around the thighs and rear on trousers. [5]

Causes

All fabrics pill to some extent, although fibers such as linen and silk pill less than most. [6] The primary drivers of pilling are the physical characteristics of the textile (including both the initial fiber, and the way in which it is processed during manufacturing), the personal habits of the textile's wearer, and the environment in which the textile is used. Fibers such as wool, cotton, polyester, nylon and acrylic have a tendency to pill the most, but wool pilling diminishes over time as non-tenacious wool fibers work themselves free of the fabric and break away, whereas pilling of synthetic textiles is a more serious problem, because the stronger fibers hold on to the pills preventing them from falling off. [7]

In general, longer fibers pill less than short ones because there are fewer ends of fibers, [2] and because it is harder for the longer fibers to work themselves out of the cloth. Fabrics with a large number of loose fibers have a higher tendency to pill. Also, knitted fabrics tend to pill more than woven fabrics, [1] because of the greater distance between yarn crossings in knitted fabrics than in woven ones. [8] For the same reason, a tightly knitted object will pill less than a loosely knitted one. [2] When a fabric is made of a blend of fibers where one fiber is significantly stronger than the other, pills tend to form as the weaker fiber wears and breaks, and the stronger fiber holds the pills onto the cloth. [2]

Prevention

Techniques used by the textile industry to avoid pilling include singeing the loose fibers protruding on the surface of textile, and spinning the yarn with a high number of twists per inch. Some fabrics are chemically treated during the manufacturing process to reduce their propensity to pill. Polymeric coatings are sometimes applied to bind fibers into the fabric surface and prevent initial fuzz from forming. Polyester and cotton fibers are sometimes modified to be of lower-than-normal strength, which results in pills detaching easily from fabrics, once they are formed. Cellulase enzymes are sometimes used on cotton fabrics during wet processing, which removes loose fibers. [6]

Textile authorities say consumers can prevent or postpone pilling of their fabrics by treating them with chemical soil release treatments that make the surface of the fabric more hydrophilic, and by turning clothes inside out before washing them. [9]

Result

Pills do not interfere with the functionality of the textile, unless a spot with a lot of pills turns into a hole in the fabric. This is because both pills and holes are caused by the fabric wearing—a pill is fiber that was in the cloth. After the pill forms the fabric is thinner there, increasing the likelihood that a hole will form.

Pilling can seriously compromise a textile's acceptability for consumers, and is the focus of significant industry research. In the textile industry, severity of pilling is objectively evaluated using five parameters: pill number, the mean area of pilling; the total area of pilling; contrast, and density. [10]

Pills can be removed by shaving the fabric.

Before and after shaving Before and after shaving.jpg
Before and after shaving

See also

Related Research Articles

<span class="mw-page-title-main">Textile</span> Various fiber-based materials

Textile is an umbrella term that includes various fiber-based materials, including fibers, yarns, filaments, threads, different fabric types, etc. At first, the word "textiles" only referred to woven fabrics. However, weaving is not the only manufacturing method, and many other methods were later developed to form textile structures based on their intended use. Knitting and non-woven are other popular types of fabric manufacturing. In the contemporary world, textiles satisfy the material needs for versatile applications, from simple daily clothing to bulletproof jackets, spacesuits, and doctor's gowns.

<span class="mw-page-title-main">Yarn</span> Long continuous length of interlocked fibres

Yarn is a long continuous length of interlocked fibres, used in sewing, crocheting, knitting, weaving, embroidery, ropemaking, and the production of textiles. To add value or improve the appearance, the yarn can be twisted with one or more other yarns. Staple fibers, which are still used today, are fibers with a finite length that have historically been used to make yarns. Thread is a type of yarn intended for sewing by hand or machine. Modern manufactured sewing threads may be finished with wax or other lubricants to withstand the stresses involved in sewing. Embroidery threads are yarns specifically designed for needlework. Yarn can be made of a number of natural or synthetic materials, and comes in a variety of colors and thicknesses. Although yarn may be dyed different colours, most yarns are solid coloured with a uniform hue. The yarn gives variety in colors and also uniqueness when the material is being used to create stuff animals, clothing, scarfs, hoodies, socks, carpets, and blankets.

<span class="mw-page-title-main">Worsted</span> Fabrics manufactured from worsted yarns.

Worsted is a high-quality type of wool yarn, the fabric made from this yarn, and a yarn weight category. The name derives from Worstead, a village in the English county of Norfolk. That village, together with North Walsham and Aylsham, formed a manufacturing centre for yarn and cloth in the 12th century, when pasture enclosure and liming rendered the East Anglian soil too rich for the older agrarian sheep breeds. In the same period, many weavers from the County of Flanders moved to Norfolk. "Worsted" yarns/fabrics are distinct from woollens : the former is considered stronger, finer, smoother, and harder than the latter.

<span class="mw-page-title-main">Dyeing</span> Process of adding color to textile products like fibers, yarns, and fabrics

Dyeing is the application of dyes or pigments on textile materials such as fibers, yarns, and fabrics with the goal of achieving color with desired color fastness. Dyeing is normally done in a special solution containing dyes and particular chemical material. Dye molecules are fixed to the fiber by absorption, diffusion, or bonding with temperature and time being key controlling factors. The bond between dye molecule and fiber may be strong or weak, depending on the dye used. Dyeing and printing are different applications; in printing, color is applied to a localized area with desired patterns. In dyeing, it is applied to the entire textile.

<span class="mw-page-title-main">Bathrobe</span> Loose, informal garment worn after bathing or at home

A bathrobe, also known as a housecoat or a dressing gown, is a loose-fitting outer garment worn by people, often after washing the body or around a pool. A bathrobe is considered to be very informal clothing, and is not worn with everyday clothes.

<span class="mw-page-title-main">Acrylic fiber</span> Synthetic fiber made from polymer

Acrylic fibers are synthetic fibers made from a polymer (polyacrylonitrile) with an average molecular weight of ~100,000, about 1900 monomer units. For a fiber to be called "acrylic" in the US, the polymer must contain at least 85% acrylonitrile monomer. Typical comonomers are vinyl acetate or methyl acrylate. DuPont created the first acrylic fibers in 1941 and trademarked them under the name Orlon. It was first developed in the mid-1940s but was not produced in large quantities until the 1950s. Strong and warm acrylic fiber is often used for sweaters and tracksuits and as linings for boots and gloves, as well as in furnishing fabrics and carpets. It is manufactured as a filament, then cut into short staple lengths similar to wool hairs, and spun into yarn.

<span class="mw-page-title-main">Textile manufacturing</span> The industry which produces textiles

Textile Manufacturing or Textile Engineering is a major industry. It is largely based on the conversion of fibre into yarn, then yarn into fabric. These are then dyed or printed, fabricated into cloth which is then converted into useful goods such as clothing, household items, upholstery and various industrial products.

<span class="mw-page-title-main">Sailcloth</span> Strong fabric of the type used to make ships sails

Sailcloth encompasses a wide variety of materials that span those from natural fibers, such as flax, hemp or cotton in various forms of sail canvas, to synthetic fibers, including nylon, polyester, aramids, and carbon fibers in a variety of woven, spun and molded textiles.

The manufacture of textiles is one of the oldest of human technologies. To make textiles, the first requirement is a source of fiber from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving, which turns yarn into cloth. The machine used for weaving is the loom. For decoration, the process of colouring yarn or the finished material is dyeing. For more information of the various steps, see textile manufacturing.

<span class="mw-page-title-main">Technical textile</span> Textile product valued for its functional characteristics

A technical textile is a textile product manufactured for non-aesthetic purposes, where function is the primary criterion. Technical textiles include textiles for automotive applications, medical textiles, geotextiles, agrotextiles, and protective clothing.

<span class="mw-page-title-main">Units of textile measurement</span> Systems for measuring textiles

Textile fibers, threads, yarns and fabrics are measured in a multiplicity of units.

<span class="mw-page-title-main">Textile recycling</span> Method of reusing or reprocessing used clothing, fibrous material and rags

Textile recycling is the process of recovering fiber, yarn, or fabric and reprocessing the material into new, useful products. Textile waste is split into pre-consumer and post-consumer waste and is sorted into five different categories derived from a pyramid model. Textiles can be either reused or mechanically/chemically recycled.

A staple fiber is a textile fiber of discrete length. The opposite is a filament fiber, which comes in continuous lengths. Staple length is a characteristic fiber length of a sample of staple fibers. A fiber is made up of natural substances and it’s known for being longer than it is wide. It is an essential criterion in yarn spinning, and aids in cohesion and twisting. Compared to synthetic fibers, natural fibers tend to have different and shorter lengths. The quality of natural fibers like cotton is categorized on staple length such as short, medium, long staple, and extra-long. Gossypium barbadense, one of several cotton species, produces extra-long staple fibers. The staple fibers may be obtained from natural and synthetic sources. In the case of synthetics and blends, the filament yarns are cut to a predetermined length.

<span class="mw-page-title-main">Novelty yarns</span> Any yarn with special effects introduced in spinning or plying

Novelty yarns include a wide variety of yarns made with unusual features, structure or fiber composition such as slubs, inclusions, metallic or synthetic fibers, laddering and varying thickness introduced during production. Some linens, wools to be woven into tweed, and the uneven filaments of some types of silk are allowed to retain their normal irregularities, producing the characteristic uneven surface of the finished fabric. Man-made fibres, which can be modified during production, are especially adaptable for special effects such as crimping and texturizing.

<span class="mw-page-title-main">Finishing (textiles)</span> Manufacturing process

In textile manufacturing, finishing refers to the processes that convert the woven or knitted cloth into a usable material and more specifically to any process performed after dyeing the yarn or fabric to improve the look, performance, or "hand" (feel) of the finish textile or clothing. The precise meaning depends on context.

Textile manufacturing is one of the oldest human activities. The oldest known textiles date back to about 5000 B.C. In order to make textiles, the first requirement is a source of fibre from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving to create cloth. The machine used for weaving is the loom. Cloth is finished by what are described as wet process to become fabric. The fabric may be dyed, printed or decorated by embroidering with coloured yarns.

Dimensional stability is the change of dimensions in textile products when they are washed or relaxed. The change is always expressed relative to the dimensions before the exposure of washing or relaxing. Shrinkage is also called residual shrinkage and measured in percentage. The major cause of shrinkages is the release of stresses and strains introduced in manufacturing processes. Textile manufacturing is based on the conversion of fiber into yarn, yarn into fabric, includes spinning, weaving, or knitting, etc. The fabric passes through many inevitable changes and mechanical forces during this journey. When the products are immersed in water, the water acts as a relaxing medium, and all stresses and strains are relaxed and the fabric tries to come back to its original state. The dimensional stability of textile materials is an important quality parameter. Failing and unstable materials can cause deforming of the garments or products. Shrinkage is tested at various stages, but most importantly before cutting the fabric into further sewn products and after cutting and sewing prior to supplying the products to buyers and consumers. It is a required parameter of quality control to ensure the sizes of the products to avoid any complaints regarding deformation or change in dimensions after domestic laundry. The tests are conducted with provided specifications of buyers imitating the same conditions like washing cycle time, temperature and water ratio and fabric load and sometimes top loading and front loading washing machines are chosen to authenticate the test and assurance of the results. This procedure provides standard and alternate home laundering conditions using an automatic washing machine. While the procedure includes several options, it is not possible to include every existing combination of laundering parameters. The test is applicable to all fabrics and end products suitable for home laundering.

Wet Processing Engineering is one of the major streams in Textile Engineering or Textile manufacturing which refers to the engineering of textile chemical processes and associated applied science. The other three streams in textile engineering are yarn engineering, fabric engineering, and apparel engineering. The processes of this stream are involved or carried out in an aqueous stage. Hence, it is called a wet process which usually covers pre-treatment, dyeing, printing, and finishing.

<span class="mw-page-title-main">Hand feel</span> Feel of the fabrics to the skin or hand

Hand feel is the property of fabrics related to the touch that expresses sensory comfort. It refers to the way fabrics feel against the skin or in the hand and conveys information about the cloth's softness and smoothness. Hand feel is an estimated and subjective property of different fabrics, but nowadays, hand feel could be measured and assessed statistically.

A blend is a mixture of two or more fibers. In yarn spinning, different compositions, lengths, diameters, or colors may be combined to create a blend. Blended textiles are fabrics or yarns produced with a combination of two or more types of different fibers, or yarns to obtain desired traits and aesthetics. Blending is possible at various stages of textile manufacturing. The term, blend, refers to spun fibers or a fabric composed of such fibers. There are several synonymous terms: a combination yarn is made up of two strands of different fibers twisted together to form a ply; a mixture or mixed cloth refers to blended cloths in which different types of yarns are used in warp and weft sides.

References

  1. 1 2 "Pill." The Oxford English Dictionary. 2nd ed. 1989.
  2. 1 2 3 4 "Popular Science". Bonnier Corporation. September 1999. p. 83. Retrieved May 13, 2009.
  3. Ukponmwan, J. O.; Mukhopadhyay, A.; Chatterjee, K. N. (1998). "Pilling". Textile Progress. 28 (3): 1–57. doi:10.1080/00405169808688874. ISSN   1754-2278.
  4. Shen, Gang, and Xiong Huang (2011). Advanced Research on Electronic Commerce, Web Application, and Communication, Part 1. London: Springer Heidelberg Dordrecht. p. 80. ISBN   978-3-642-20366-4.
  5. Mehta, Pradip V., and Satish K. Bhardwaj (1998). Managing quality in the apparel industry. New Delhi: National Institute of Fashion Technology and New Age International Publishers. p. 110. ISBN   978-81-224-1166-9.
  6. 1 2 Schindler, Wolfgang D., and Peter J. Hauser (2004). Chemical finishing of textiles. Manchester, England: Woodhead Publishing in Textiles. pp. 132–133. ISBN   1-85573-905-4.
  7. Yates, Marypaul (2002). Fabrics: a guide for interior designers and architects. New York: W.W. Norton. p. 188. ISBN   978-0-393-73062-3.
  8. Berkowitch, John (1996). Trends in Japanese Textile Technology. Diane pub. p. 27. ISBN   0-7881-8938-7 . Retrieved May 13, 2009.
  9. Mendelson, Cheryl (1999). Home comforts: the art and science of keeping house. New York: Scribner. p. 230. ISBN   0-684-81465-X.
  10. Fan, Jintu, and Winnie Wing-man Yu, Winnie Yu, L. Hunte (2004). Clothing appearance and fit: science and technology. Cambridge: Woodhead Publishing Series in Textiles No. 33. pp. 54–60. ISBN   1-85573-745-0.