Polyene

Last updated

In organic chemistry, polyenes are poly-unsaturated, organic compounds that contain at least three alternating double (C=C) and single (C−C) carbon–carbon bonds. These carbon–carbon double bonds interact in a process known as conjugation, resulting in some unusual optical properties. Related to polyenes are dienes, where there are only two alternating double and single bonds.

Contents

The following polyenes are used as antimycotics for humans: amphotericin B, nystatin, candicidin, pimaricin, methyl partricin, and trichomycin. [1]

Optical properties

Some polyenes are brightly colored, an otherwise rare property for a hydrocarbon. Normally alkenes absorb in the ultraviolet region of a spectrum, but the absorption energy state of polyenes with numerous conjugated double bonds can be lowered such that they enter the visible region of the spectrum, resulting in compounds which are coloured (because they contain a chromophore). Thus many natural dyes contain linear polyenes.

Chemical and electrical properties

Polyenes tend to be more reactive than simpler alkenes. For example, polyene-containing triglycerides are reactive towards atmospheric oxygen. Polyacetylene, which partially oxidized or reduced, exhibits high electrical conductivity. Most conductive polymers are polyenes, and many have conjugated structures. Poly(aza)acetylenes are readily prepared from pyridine precursors without the necessity of a controlled atmosphere, simply by ultraviolet irradiation of a mixture of pyridine and poly(4-vinyl) pyridine.[ citation needed ] Recent research at the Weizmann Institute and Aix-Marseille University showed a clear transition between ionic and electronic conductivity with increasing UV dose over 30 hours. [2]

Occurrence

A few fatty acids are polyenes. Another class of important polyenes are polyene antimycotics, [3]

Related Research Articles

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

<span class="mw-page-title-main">Alkyne</span> Hydrocarbon compound containing one or more C≡C bonds

In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n−2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic.

<span class="mw-page-title-main">Diene</span> Covalent compound that contains two double bonds

In organic chemistry, a diene ; also diolefin, dy-OH-lə-fin) or alkadiene) is a covalent compound that contains two double bonds, usually among carbon atoms. They thus contain two alkene units, with the standard prefix di of systematic nomenclature. As a subunit of more complex molecules, dienes occur in naturally occurring and synthetic chemicals and are used in organic synthesis. Conjugated dienes are widely used as monomers in the polymer industry. Polyunsaturated fats are of interest to nutrition.

<span class="mw-page-title-main">Organic chemistry</span> Subdiscipline of chemistry, focusing on carbon compounds

Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. Study of structure determines their structural formula. Study of properties includes physical and chemical properties, and evaluation of chemical reactivity to understand their behavior. The study of organic reactions includes the chemical synthesis of natural products, drugs, and polymers, and study of individual organic molecules in the laboratory and via theoretical study.

<span class="mw-page-title-main">Vinyl group</span> Chemical group (–CH=CH₂)

In organic chemistry, a vinyl group is a functional group with the formula −CH=CH2. It is the ethylene molecule with one fewer hydrogen atom. The name is also used for any compound containing that group, namely R−CH=CH2 where R is any other group of atoms.

<span class="mw-page-title-main">Conjugated system</span> System of connected p-orbitals with delocalized electrons in a molecule

In theoretical chemistry, a conjugated system is a system of connected p-orbitals with delocalized electrons in a molecule, which in general lowers the overall energy of the molecule and increases stability. It is conventionally represented as having alternating single and multiple bonds. Lone pairs, radicals or carbenium ions may be part of the system, which may be cyclic, acyclic, linear or mixed. The term "conjugated" was coined in 1899 by the German chemist Johannes Thiele.

<span class="mw-page-title-main">Antifungal</span> Pharmaceutical fungicide or fungistatic used to treat and prevent mycosis

An antifungal medication, also known as an antimycotic medication, is a pharmaceutical fungicide or fungistatic used to treat and prevent mycosis such as athlete's foot, ringworm, candidiasis (thrush), serious systemic infections such as cryptococcal meningitis, and others. Such drugs are usually obtained by a doctor's prescription, but a few are available over the counter (OTC). The evolution of antifungal resistance is a growing threat to health globally.

<span class="mw-page-title-main">Conductive polymer</span> Organic polymers that conduct electricity

Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The main advantage of conductive polymers is that they are easy to process, mainly by dispersion. Conductive polymers are generally not thermoplastics, i.e., they are not thermoformable. But, like insulating polymers, they are organic materials. They can offer high electrical conductivity but do not show similar mechanical properties to other commercially available polymers. The electrical properties can be fine-tuned using the methods of organic synthesis and by advanced dispersion techniques.

<span class="mw-page-title-main">Polyacetylene</span> Organic polymer made of the repeating unit [C2H2]

Polyacetylene usually refers to an organic polymer with the repeating unit [C2H2]n. The name refers to its conceptual construction from polymerization of acetylene to give a chain with repeating olefin groups. This compound is conceptually important, as the discovery of polyacetylene and its high conductivity upon doping helped to launch the field of organic conductive polymers. The high electrical conductivity discovered by Hideki Shirakawa, Alan Heeger, and Alan MacDiarmid for this polymer led to intense interest in the use of organic compounds in microelectronics. This discovery was recognized by the Nobel Prize in Chemistry in 2000. Early work in the field of polyacetylene research was aimed at using doped polymers as easily processable and lightweight "plastic metals". Despite the promise of this polymer in the field of conductive polymers, many of its properties such as instability to air and difficulty with processing have led to avoidance in commercial applications.

<span class="mw-page-title-main">Polythiophene</span>

Polythiophenes (PTs) are polymerized thiophenes, a sulfur heterocycle. The parent PT is an insoluble colored solid with the formula (C4H2S)n. The rings are linked through the 2- and 5-positions. Poly(alkylthiophene)s have alkyl substituents at the 3- or 4-position(s). They are also colored solids, but tend to be soluble in organic solvents.

In organic chemistry, a cycloalkene or cycloolefin is a type of alkene hydrocarbon which contains a closed ring of carbon atoms and either one or more double bonds, but has no aromatic character. Some cycloalkenes, such as cyclobutene and cyclopentene, can be used as monomers to produce polymer chains. Due to geometrical considerations, smaller cycloalkenes are almost always the cis isomers, and the term cis tends to be omitted from the names. Cycloalkenes require considerable p-orbital overlap in the form of a bridge between the carbon-carbon double bond; however, this is not feasible in smaller molecules due to the increase of strain that could break the molecule apart. In greater carbon number cycloalkenes, the addition of CH2 substituents decreases strain. trans-Cycloalkenes with 7 or fewer carbons in the ring will not occur under normal conditions because of the large amount of ring strain needed. In larger rings, cistrans isomerism of the double bond may occur. This stability pattern forms part of the origin of Bredt's rule, the observation that alkenes do not form at the bridgehead of many types of bridged ring systems because the alkene would necessarily be trans in one of the rings.

<span class="mw-page-title-main">Ergosterol</span> Chemical compound

Ergosterol (ergosta-5,7,22-trien-3β-ol) is a mycosterol found in cell membranes of fungi and protozoa, serving many of the same functions that cholesterol serves in animal cells. Because many fungi and protozoa cannot survive without ergosterol, the enzymes that synthesize it have become important targets for drug discovery. In human nutrition, ergosterol is a provitamin form of vitamin D2; exposure to ultraviolet (UV) light causes a chemical reaction that produces vitamin D2.

Polyene antimycotics, sometimes referred to as polyene antibiotics, are a class of antimicrobial polyene compounds that target fungi. These polyene antimycotics are typically obtained from some species of Streptomyces bacteria. Previously, polyenes were thought to bind to ergosterol in the fungal cell membrane and thus weakening it and causing leakage of K+ and Na+ ions, which could contribute to fungal cell death. However, more detailed studies of polyene molecular properties have challenged this model suggesting that polyenes instead bind and extract ergosterol directly from the cellular membrane thus disrupting the many cellular functions ergosterols perform. Amphotericin B, nystatin, and natamycin are examples of polyene antimycotics. They are a subgroup of macrolides.

<span class="mw-page-title-main">Cyclooctadecanonaene</span> Chemical compound

Cyclooctadecanonaene or [18]annulene is an organic compound with chemical formula C
18
H
18
. It belongs to the class of highly conjugated compounds known as annulenes and is aromatic. The usual isomer that [18]annulene refers to is the most stable one, containing six interior hydrogens and twelve exterior ones, with the nine formal double bonds in the cis,trans,trans,cis,trans,trans,cis,trans,trans configuration. It is reported to be a red-brown crystalline solid.

<span class="mw-page-title-main">Hamycin</span> Group of chemical compounds

Hamycin is a pair polyene antimycotic organic compounds described in India. It is a heptaene antifungal compound rather similar in chemical structure to amphotericin B except that it has an additional aromatic group bonded to the molecule. When pure, hamycin is a yellow, powdered solid. There are two versions of hamycin with very similar chemical structures: hamycin A and hamycin B.

<span class="mw-page-title-main">Vinylogy</span> Transmission of electronic effects through a system of conjugated chemical bonds

In organic chemistry, vinylogy is the transmission of electronic effects through a conjugated organic bonding system. The concept was introduced in 1926 by Ludwig Claisen to explain the acidic properties of formylacetone and related ketoaldehydes. Formylacetone, technically CH3(C=O)CH2CH=O, only exists in the ionized form CH3(C−O)=CH−CH=O or CH3(C=O)−CH=CH−O. Its adjectival form, vinylogous, is used to describe functional groups in which the standard moieties of the group are separated by a carbon–carbon double bond.

Woodward's rules, named after Robert Burns Woodward and also known as Woodward–Fieser rules are several sets of empirically derived rules which attempt to predict the wavelength of the absorption maximum (λmax) in an ultraviolet–visible spectrum of a given compound. Inputs used in the calculation are the type of chromophores present, the auxochromes (substituents on the chromophores, and solvent. Examples are conjugated carbonyl compounds, conjugated dienes, and polyenes.

Molecular wires are molecular chains that conduct electric current. They are the proposed building blocks for molecular electronic devices. Their typical diameters are less than three nanometers, while their lengths may be macroscopic, extending to centimeters or more.

<span class="mw-page-title-main">Photo-oxidation of polymers</span>

In polymer chemistry photo-oxidation is the degradation of a polymer surface due to the combined action of light and oxygen. It is the most significant factor in the weathering of plastics. Photo-oxidation causes the polymer chains to break, resulting in the material becoming increasingly brittle. This leads to mechanical failure and, at an advanced stage, the formation of microplastics. In textiles the process is called phototendering.

α,β-Unsaturated carbonyl compound Functional group of organic compounds

α,β-Unsaturated carbonyl compounds are organic compounds with the general structure (O=CR)−Cα=Cβ-R. Such compounds include enones and enals, but also carboxylic acids and the corresponding esters and amides. In these compounds, the carbonyl group is conjugated with an alkene. Unlike the case for carbonyls without a flanking alkene group, α,β-unsaturated carbonyl compounds are susceptible to attack by nucleophiles at the β-carbon. This pattern of reactivity is called vinylogous. Examples of unsaturated carbonyls are acrolein (propenal), mesityl oxide, acrylic acid, and maleic acid. Unsaturated carbonyls can be prepared in the laboratory in an aldol reaction and in the Perkin reaction.

References

  1. Zotchev, Sergey B. (2003). "Polyene macrolide antibiotics and their applications in human therapy". Current Medicinal Chemistry. 10 (3): 211–223. doi:10.2174/0929867033368448. PMID   12570708.
  2. Vaganova, Evgenia; Eliaz, Dror; Shimanovich, Ulyana; Leitus, Gregory; Aqad, Emad; Lokshin, Vladimir; Khodorkovsky, Vladimir (January 2021). "Light-Induced Reactions within Poly(4-vinyl pyridine)/Pyridine Gels: The 1,6-Polyazaacetylene Oligomers Formation". Molecules. 26 (22): 6925. doi: 10.3390/molecules26226925 . ISSN   1420-3049. PMC   8621047 . PMID   34834017.
  3. NCBI Bookshelf (1996). "Polyene Antifungal Drugs". The University of Texas Medical Branch at Galveston. Retrieved 29 January 2010.
  4. Torrado, J. J.; Espada, R.; Ballesteros, M. P.; Torrado-Santiago, S. "Amphotericin B formulations and drug targeting" Journal of Pharmaceutical Sciences 2008, volume 97, pp. 2405-2425. doi : 10.1002/jps.21179
  5. Lam, Jacky W. Y.; Tang, Ben Zhong "Functional Polyacetylenes" Accounts of Chemical Research 2005, volume 38, pp. 745-754. doi : 10.1021/ar040012f