Polygon-circle graph

Last updated
On the left a set of polygons inscribed in a circle; on the right the relative Polygon-circle graph (intersection graph of the polygons).
On the bottom the alternating sequence of polygons around the circle. Polygon-circle graph.svg
On the left a set of polygons inscribed in a circle; on the right the relative Polygon-circle graph (intersection graph of the polygons).
On the bottom the alternating sequence of polygons around the circle.

In the mathematical discipline of graph theory, a polygon-circle graph is an intersection graph of a set of convex polygons all of whose vertices lie on a common circle. These graphs have also been called spider graphs. This class of graphs was first suggested by Michael Fellows in 1988, motivated by the fact that it is closed under edge contraction and induced subgraph operations. [1]

Contents

A polygon-circle graph can be represented as an "alternating sequence". Such a sequence can be gained by perturbing the polygons representing the graph (if necessary) so that no two share a vertex, and then listing for each vertex (in circular order, starting at an arbitrary point) the polygon attached to that vertex.

Closure under induced minors

Contracting an edge of a polygon-circle graph results in another polygon-circle graph. A geometric representation of the new graph may be formed by replacing the polygons corresponding to the two endpoints of the contracted edge by their convex hull. Alternatively, in the alternating sequence representing the original graph, combining the subsequences representing the endpoints of the contracted edge into a single subsequence produces an alternating sequence representation of the contracted graph. Polygon circle graphs are also closed under induced subgraph or equivalently vertex deletion operations: to delete a vertex, remove its polygon from the geometric representation, or remove its subsequence of points from the alternating sequence.

Recognition

M. Koebe announced a polynomial time recognition algorithm; [2] however, his preliminary version had "serious errors" [3] and a final version was never published. [1] Martin Pergel later proved that the problem of recognizing these graphs is NP-complete. [4] It is also NP-complete to determine whether a given graph can be represented as a polygon-circle graph with at most k vertices per polygon, for any k ≥ 3. [1]

The polygon-circle graphs are a generalization of the circle graphs, which are intersection graphs of the chords of a circle, and the trapezoid graphs, intersection graphs of trapezoids that all have their vertices on the same two parallel lines. They also include the circular arc graphs. [1] [5]

Polygon-circle graphs are not, in general, perfect graphs, but they are near-perfect, in the sense that their chromatic numbers can be bounded by an (exponential) function of their clique numbers. [6]

Related Research Articles

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

<span class="mw-page-title-main">Interval graph</span> Intersection graph for intervals on the real number line

In graph theory, an interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect. It is the intersection graph of the intervals.

<span class="mw-page-title-main">Simple polygon</span> Shape bounded by non-intersecting line segments

In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a piecewise-linear Jordan curve consisting of finitely many line segments. These polygons include as special cases the convex polygons, star-shaped polygons, and monotone polygons.

<span class="mw-page-title-main">Circle graph</span> Intersection graph of a chord diagram

In graph theory, a circle graph is the intersection graph of a chord diagram. That is, it is an undirected graph whose vertices can be associated with a finite system of chords of a circle such that two vertices are adjacent if and only if the corresponding chords cross each other.

In graph theory, Schnyder's theorem is a characterization of planar graphs in terms of the order dimension of their incidence posets. It is named after Walter Schnyder, who published its proof in 1989.

<span class="mw-page-title-main">Geometric graph theory</span> Subfield of graph theory

Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are allowed to be arbitrary continuous curves connecting the vertices; thus, it can be described as "the theory of geometric and topological graphs". Geometric graphs are also known as spatial networks.

In graph theory, a path decomposition of a graph G is, informally, a representation of G as a "thickened" path graph, and the pathwidth of G is a number that measures how much the path was thickened to form G. More formally, a path-decomposition is a sequence of subsets of vertices of G such that the endpoints of each edge appear in one of the subsets and such that each vertex appears in a contiguous subsequence of the subsets, and the pathwidth is one less than the size of the largest set in such a decomposition. Pathwidth is also known as interval thickness, vertex separation number, or node searching number.

<span class="mw-page-title-main">Intersection graph</span> Graph representing intersections between given sets

In graph theory, an intersection graph is a graph that represents the pattern of intersections of a family of sets. Any graph can be represented as an intersection graph, but some important special classes of graphs can be defined by the types of sets that are used to form an intersection representation of them.

<span class="mw-page-title-main">Pseudotriangle</span>

In Euclidean plane geometry, a pseudotriangle (pseudo-triangle) is the simply connected subset of the plane that lies between any three mutually tangent convex sets. A pseudotriangulation (pseudo-triangulations) is a partition of a region of the plane into pseudotriangles, and a pointed pseudotriangulation is a pseudotriangulation in which at each vertex the incident edges span an angle of less than π.

In geometry, a vertex is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices.

<span class="mw-page-title-main">Claw-free graph</span> Graph without four-vertex star subgraphs

In graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph.

In graph theory, a string graph is an intersection graph of curves in the plane; each curve is called a "string". Given a graph G, G is a string graph if and only if there exists a set of curves, or strings, such that the graph having a vertex for each curve and an edge for each intersecting pair of curves is isomorphic to G.

<span class="mw-page-title-main">Distance-hereditary graph</span> Graph whose induced subgraphs preserve distance

In graph theory, a branch of discrete mathematics, a distance-hereditary graph is a graph in which the distances in any connected induced subgraph are the same as they are in the original graph. Thus, any induced subgraph inherits the distances of the larger graph.

<span class="mw-page-title-main">Permutation graph</span> Graph representing a permutation

In the mathematical field of graph theory, a permutation graph is a graph whose vertices represent the elements of a permutation, and whose edges represent pairs of elements that are reversed by the permutation. Permutation graphs may also be defined geometrically, as the intersection graphs of line segments whose endpoints lie on two parallel lines. Different permutations may give rise to the same permutation graph; a given graph has a unique representation if it is prime with respect to the modular decomposition.

In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.

In the study of graph algorithms, an implicit graph representation is a graph whose vertices or edges are not represented as explicit objects in a computer's memory, but rather are determined algorithmically from some other input, for example a computable function.

<span class="mw-page-title-main">Apollonian network</span> Graph formed by subdivision of triangles

In combinatorial mathematics, an Apollonian network is an undirected graph formed by a process of recursively subdividing a triangle into three smaller triangles. Apollonian networks may equivalently be defined as the planar 3-trees, the maximal planar chordal graphs, the uniquely 4-colorable planar graphs, and the graphs of stacked polytopes. They are named after Apollonius of Perga, who studied a related circle-packing construction.

In graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average of its neighbors' positions. If the outer polygon is fixed, this condition on the interior vertices determines their position uniquely as the solution to a system of linear equations. Solving the equations geometrically produces a planar embedding. Tutte's spring theorem, proven by W. T. Tutte (1963), states that this unique solution is always crossing-free, and more strongly that every face of the resulting planar embedding is convex. It is called the spring theorem because such an embedding can be found as the equilibrium position for a system of springs representing the edges of the graph.

In graph theory, a cop-win graph is an undirected graph on which the pursuer (cop) can always win a pursuit–evasion game against a robber, with the players taking alternating turns in which they can choose to move along an edge of a graph or stay put, until the cop lands on the robber's vertex. Finite cop-win graphs are also called dismantlable graphs or constructible graphs, because they can be dismantled by repeatedly removing a dominated vertex or constructed by repeatedly adding such a vertex. The cop-win graphs can be recognized in polynomial time by a greedy algorithm that constructs a dismantling order. They include the chordal graphs, and the graphs that contain a universal vertex.

<span class="mw-page-title-main">Penny graph</span> Graph formed by touching unit circles

In geometric graph theory, a penny graph is a contact graph of unit circles. It is formed from a collection of unit circles that do not cross each other, by creating a vertex for each circle and an edge for every pair of tangent circles. The circles can be represented physically by pennies, arranged without overlapping on a flat surface, with a vertex for each penny and an edge for each two pennies that touch.

References

  1. 1 2 3 4 Kratochvíl, Jan; Pergel, Martin (2004), "Two results on intersection graphs of polygons", Graph Drawing: 11th International Symposium, GD 2003 Perugia, Italy, September 21-24, 2003, Revised Papers , Lecture Notes in Computer Science, vol. 2912, Berlin: Springer, pp. 59–70, doi: 10.1007/978-3-540-24595-7_6 , MR   2177583 .
  2. Koebe, Manfred (1992), "On a new class of intersection graphs", Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity (Prachatice, 1990), Ann. Discrete Math., vol. 51, North-Holland, Amsterdam, pp. 141–143, doi:10.1016/S0167-5060(08)70618-6, MR   1206256 .
  3. Spinrad, Jeremy P. (2003), Efficient graph representations, Fields Institute Monographs, vol. 19, American Mathematical Society, Providence, RI, p. 41, ISBN   0-8218-2815-0, MR   1971502 .
  4. Pergel, Martin (2007), "Recognition of polygon-circle graphs and graphs of interval filaments is NP-complete", Graph-Theoretic Concepts in Computer Science: 33rd International Workshop, WG 2007, Dornburg, Germany, June 21-23, 2007, Revised Papers, Lecture Notes in Computer Science, vol. 4769, Berlin: Springer, pp. 238–247, doi:10.1007/978-3-540-74839-7_23, MR   2428581 .
  5. Spider graphs, Information System on Graph Classes and their Inclusions, retrieved 2016-07-11.
  6. Kostochka, Alexandr; Kratochvíl, Jan (1997), "Covering and coloring polygon-circle graphs", Discrete Mathematics , 163 (1–3): 299–305, doi: 10.1016/S0012-365X(96)00344-5 , MR   1428585 .