Polyhedral symbol

Last updated

The polyhedral symbol is sometimes used in coordination chemistry to indicate the approximate geometry of the coordinating atoms around the central atom. One or more italicised letters indicate the geometry, e.g. TP-3 which is followed by a number that gives the coordination number of the central atom. [1] The polyhedral symbol can be used in naming of compounds, in which case it is followed by the configuration index. [1]

Contents

Polyhedral symbols [1]

Polyhedral Symbols
description
L-2linear - 2 coordinate Linear (chemistry)
A-2bent - 2 coordinate Bent (chemistry)
TP-3trigonal planar – 3 coordinate Trigonal planar
TPY-3trigonal pyramidal- 3 coordinate Trigonal pyramid (chemistry)
TS-3T-shaped- 3 coordinate T-shaped (chemistry)
T-4tetrahedral geometry – 4 coordinate Tetrahedral molecular geometry
SP-4square planar – 4 coordinate Square planar
SPY-4square pyramidal– 4 coordinate
SS-4see-saw– 4 coordinate Seesaw (chemistry)
TBPY-5trigonal bipyramidal- 5 coordinate Trigonal bipyramidal molecular geometry
SPY-5square pyramidal – 5 coordinate Square pyramidal molecular geometry
OC-6octahedral geometry – 6 coordinate Octahedral molecular geometry
TPR-6trigonal prismatic -6 coordinate Trigonal prismatic molecular geometry
PBPY-7pentagonal bipyramid- 7 coordinate Pentagonal bipyramid molecular geometry
OCF-7face capped octahedron- 7 coordinate Capped octahedral molecular geometry
TPRS-7trigonal prism, square face monocapped Capped trigonal prismatic molecular geometry
CU-8cubic -8 coordinate
SAPR-8square anti prism Square antiprismatic molecular geometry
DD-8dodecahedral Dodecahedral molecular geometry
HBPY-8hexagonal bipyramid
OCT-8octahedron, trans-bicapped
TPRT-8trigonal prism, triangular face bicapped
TPRS-8trigonal prism, square face bicapped Bicapped trigonal prismatic molecular geometry
TPRS-9trigonal prism, square face tricapped Tricapped trigonal prismatic molecular geometry
HBPY-9heptagonal bipyramid

Configuration index [1]

The first step in determining the configuration index is to assign a priority number to each coordinating ligand according to the Cahn-Ingold-Prelog priority rules, (CIP rules). The preferred ligand takes the lowest priority number. For example, of the ligands acetonitrile, chloride ion and pyridine thepriority number assigned are chloride, 1; acetonitrile,2; pyridene,3. Each coordination type has a different procedure for specifying the configuration index and these are outlined in below.

T-shaped (TS-3)

The configuration index is a single digit which is defined as the priority number of the ligand on the stem of the "T".

Seesaw (SS- 4)

The configuration index has two digits which are the priority numbers of the ligands separated by the largest angle. The lowest priority number of the pair is quoted first.

Square planar (SP-4)

The configuration index is a single digit which is the priority number of the ligand trans to the highest priority ligand. (If there are two possibilities the principle of trans difference is applied). As an example, (acetonitrile)dichlorido(pyridine)platinum(II) complex where the Cl ligands may be trans or cis to one another.
The ligand priority numbers are, applying the CIP rules:

In the trans case the configuration index is 1 giving the name(SP-4-1)-(acetonitrile)dichlorido(pyridine)platinum(II).
In the cis case both of the organic ligands are trans to a chloride so to choose the trans difference is considered and the greater is between 1 and three therefore the name is (SP-4-3)-(acetonitrile)dichlorido(pyridine)platinum(II).

Octahedral (OC-6)

The configuration index has two digits. The first digit is the priority number of the ligand trans to the highest priority ligand. This pair is then used to define the reference axis of the octahedron. The second digit is the priority number of the ligand trans to the highest priority ligand in the plane perpendicular to the reference axis.

Square pyramidal (SPY-4)

The configuration index is a single digit which is the priority number of the ligand trans to the ligand of lowest priority in the plane perpendicular to the 4 fold axis. (If there is more than one choice then the highest numerical value second digit is taken.) NB this procedure gives the same result as SP-4, however in this case the polyhedral symbol specifies that the complex is non-planar.

Square pyramidal (SPY-5)

There are two digits. The first digit is the priority number of the ligand on the fourfold (C4) axis of the idealised pyramid the second digit is the priority number of the ligand trans to ligand of lowest priority in the plane perpendicular to the 4 fold axis. (If there is more than one choice then the highest numerical value second digit is taken.)

Trigonal bipyramidal (TBPY-5)

The configuration index consists of two digits which are the priority numbers of the ligands on the threefold rotation axis. The lowest numerical value is cited first.

Other bipyramidal structures (PBPY-7, HBPY-8 and HBPY-9)

The configuration index consists of two segments separated by a hyphen. The first segment consists of two digits which are the priority numbers of the ligands on the five, six or sevenfold rotation axis. The lowest numerical value is cited first.

The second segment consists of 5, 6 or 7 digits respectively. The lowest priority number is the first digit followed by the digits of the other atoms in the plane. The clockwise and anticlockwise sequences are compared and the one that yields the lowest numerical sequence is chosen.

Related Research Articles

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

<span class="mw-page-title-main">Cahn–Ingold–Prelog priority rules</span> Naming convention for stereoisomers of molecules

In organic chemistry, the Cahn–Ingold–Prelog (CIP) sequence rules are a standard process to completely and unequivocally name a stereoisomer of a molecule. The purpose of the CIP system is to assign an R or S descriptor to each stereocenter and an E or Z descriptor to each double bond so that the configuration of the entire molecule can be specified uniquely by including the descriptors in its systematic name. A molecule may contain any number of stereocenters and any number of double bonds, and each usually gives rise to two possible isomers. A molecule with an integer n describing the number of stereocenters will usually have 2n stereoisomers, and 2n−1 diastereomers each having an associated pair of enantiomers. The CIP sequence rules contribute to the precise naming of every stereoisomer of every organic molecule with all atoms of ligancy of fewer than 4.

<span class="mw-page-title-main">Coordination complex</span> Molecule or ion containing ligands datively bonded to a central metallic atom

A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents. Many metal-containing compounds, especially those that include transition metals, are coordination complexes.

<i>Cis</i>–<i>trans</i> isomerism Pairs of molecules with same chemical formula showing different spatial orientations

Cistrans isomerism, also known as geometric isomerism, describes certain arrangements of atoms within molecules. The prefixes "cis" and "trans" are from Latin: "this side of" and "the other side of", respectively. In the context of chemistry, cis indicates that the functional groups (substituents) are on the same side of some plane, while trans conveys that they are on opposing (transverse) sides. Cistrans isomers are stereoisomers, that is, pairs of molecules which have the same formula but whose functional groups are in different orientations in three-dimensional space. Cis and trans isomers occur both in organic molecules and in inorganic coordination complexes. Cis and trans descriptors are not used for cases of conformational isomerism where the two geometric forms easily interconvert, such as most open-chain single-bonded structures; instead, the terms "syn" and "anti" are used.

<span class="mw-page-title-main">Ligand</span> Ion or molecule that binds to a central metal atom to form a coordination complex

In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electron pairs, often through Lewis bases. The nature of metal–ligand bonding can range from covalent to ionic. Furthermore, the metal–ligand bond order can range from one to three. Ligands are viewed as Lewis bases, although rare cases are known to involve Lewis acidic "ligands".

<span class="mw-page-title-main">Stereoisomerism</span> When molecules have the same atoms and bond structure but differ in 3D orientation

In stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in space. This contrasts with structural isomers, which share the same molecular formula, but the bond connections or their order differs. By definition, molecules that are stereoisomers of each other represent the same structural isomer.

<span class="mw-page-title-main">Stereocenter</span> Atom which is the focus of stereoisomerism in a molecule

In stereochemistry, a stereocenter of a molecule is an atom (center), axis or plane that is the focus of stereoisomerism; that is, when having at least three different groups bound to the stereocenter, interchanging any two different groups creates a new stereoisomer. Stereocenters are also referred to as stereogenic centers.

<span class="mw-page-title-main">Alfred Werner</span> Swiss chemist (1866–1919)

Alfred Werner was a Swiss chemist who was a student at ETH Zurich and a professor at the University of Zurich. He won the Nobel Prize in Chemistry in 1913 for proposing the octahedral configuration of transition metal complexes. Werner developed the basis for modern coordination chemistry. He was the first inorganic chemist to win the Nobel Prize, and the only one prior to 1973.

In organic chemistry, a carbyne is a general term for any compound whose structure consists of an electrically neutral carbon atom connected by a single covalent bond and has three non-bonded electrons. The carbon atom has either one or three unpaired electrons, depending on its excitation state; making it a radical. The chemical formula can be written R−C· or R−C, or just CH.

<span class="mw-page-title-main">Octahedral molecular geometry</span> Molecular geometry

In chemistry, octahedral molecular geometry, also called square bipyramidal, describes the shape of compounds with six atoms or groups of atoms or ligands symmetrically arranged around a central atom, defining the vertices of an octahedron. The octahedron has eight faces, hence the prefix octa. The octahedron is one of the Platonic solids, although octahedral molecules typically have an atom in their centre and no bonds between the ligand atoms. A perfect octahedron belongs to the point group Oh. Examples of octahedral compounds are sulfur hexafluoride SF6 and molybdenum hexacarbonyl Mo(CO)6. The term "octahedral" is used somewhat loosely by chemists, focusing on the geometry of the bonds to the central atom and not considering differences among the ligands themselves. For example, [Co(NH3)6]3+, which is not octahedral in the mathematical sense due to the orientation of the N−H bonds, is referred to as octahedral.

The coordination geometry of an atom is the geometrical pattern defined by the atoms around the central atom. The term is commonly applied in the field of inorganic chemistry, where diverse structures are observed. The coodination geometry depends on the number, not the type, of ligands bonded to the metal centre as well as their locations. The number of atoms bonded is the coordination number. The geometrical pattern can be described as a polyhedron where the vertices of the polyhedron are the centres of the coordinating atoms in the ligands.

<span class="mw-page-title-main">Uranyl</span> Oxycation of uranium

The uranyl ion is an oxycation of uranium in the oxidation state +6, with the chemical formula UO2+
2
. It has a linear structure with short U–O bonds, indicative of the presence of multiple bonds between uranium and oxygen. Four or more ligands may be bound to the uranyl ion in an equatorial plane around the uranium atom. The uranyl ion forms many complexes, particularly with ligands that have oxygen donor atoms. Complexes of the uranyl ion are important in the extraction of uranium from its ores and in nuclear fuel reprocessing.

The molecular configuration of a molecule is the permanent geometry that results from the spatial arrangement of its bonds. The ability of the same set of atoms to form two or more molecules with different configurations is stereoisomerism. This is distinct from constitutional isomerism which arises from atoms being connected in a different order. Conformers which arise from single bond rotations, if not isolatable as atropisomers, do not count as distinct molecular configurations as the spatial connectivity of bonds is identical.

<span class="mw-page-title-main">Hapticity</span> Number of contiguous atoms in a ligand that bond to the central atom in a coordination complex

In coordination chemistry, hapticity is the coordination of a ligand to a metal center via an uninterrupted and contiguous series of atoms. The hapticity of a ligand is described with the Greek letter η ('eta'). For example, η2 describes a ligand that coordinates through 2 contiguous atoms. In general the η-notation only applies when multiple atoms are coordinated. In addition, if the ligand coordinates through multiple atoms that are not contiguous then this is considered denticity, and the κ-notation is used once again. When naming complexes care should be taken not to confuse η with μ ('mu'), which relates to bridging ligands.

In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion/molecule/atom is called a ligand. This number is determined somewhat differently for molecules than for crystals.

Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005 is the 2005 version of Nomenclature of Inorganic Chemistry. It is a collection of rules for naming inorganic compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC).

<span class="mw-page-title-main">Isomer</span> Chemical compounds with the same molecular formula but different atomic arrangements

In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, same number of atoms of each element – but distinct arrangements of atoms in space. Isomerism refers to the existence or possibility of isomers.

<span class="mw-page-title-main">Chloro(pyridine)cobaloxime</span> Chemical compound

Chloro(pyridine)cobaloxime is a coordination compound containing a CoIII center with octahedral coordination. It has been considered as a model compound of vitamin B12 for studying the properties and mechanism of action of the vitamin. It belongs to a class of bis(dimethylglyoximato)cobalt(III) complexes with different axial ligands, called cobaloximes. Chloro(pyridine)cobaloxime is a yellow-brown powder that is sparingly soluble in most solvents, including water.

In chemical nomenclature, a descriptor is a notational prefix placed before the systematic substance name, which describes the configuration or the stereochemistry of the molecule. Some listed descriptors are only of historical interest and should not be used in publications anymore as they do not correspond with the modern recommendations of the IUPAC. Stereodescriptors are often used in combination with locants to clearly identify a chemical structure unambiguously.

<span class="mw-page-title-main">Transition metal pyridine complexes</span>

Transition metal pyridine complexes encompass many coordination complexes that contain pyridine as a ligand. Most examples are mixed-ligand complexes. Many variants of pyridine are also known to coordinate to metal ions, such as the methylpyridines, quinolines, and more complex rings.

References

  1. 1 2 3 4 NOMENCLATURE OF INORGANIC CHEMISTRY IUPAC Recommendations 2005 ed. N. G. Connelly et al. RSC Publishing https://iupac.org/wp-content/uploads/2016/07/Red_Book_2005.pdf