Polyhydroxyethylmethacrylate

Last updated
Polyhydroxyethylmethacrylate
Polyhydroxyethylmethacrylate structural.svg
Names
IUPAC name
Poly(2-hydroxyethyl methacrylate)
Other names
PHEMA, poly-HEMA, Hydron
Identifiers
ChemSpider
  • None
PubChem CID
Properties
(C6H10O3)n
Molar mass Variable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Poly(2-hydroxyethyl methacrylate) (pHEMA) is a polymer that forms a hydrogel in water. Poly (hydroxyethyl methacrylate) (PHEMA) hydrogel for intraocular lens (IOL) materials was synthesized by solution polymerization using 2-hydroxyethyl methacrylate (HEMA) as raw material, ammonium persulfate and sodium pyrosulfite (APS/SMBS) as catalyst, and triethyleneglycol dimethacrylate (TEGDMA) as cross-linking additive. It was invented by Drahoslav Lim and Otto Wichterle for biological use. [1] Together they succeeded in preparing a cross-linking gel which absorbed up to 40% of water, exhibited suitable mechanical properties and was transparent. They patented this material in 1953.

Contents

Applications

Contact lenses

In 1954, this material was first used as an optical implant. Wichterle thought pHEMA might be a suitable material for a contact lens and gained his first patent for soft contact lenses. [2] By late 1961, he succeeded in producing the first four pHEMA hydrogel contact lenses on a home-made apparatus.

Copolymers of pHEMA are still widely used today. Poly-HEMA functions as a hydrogel by rotating around its central carbon. In air, the non-polar methyl side turns outward, making the material brittle and easy to grind into the correct lens shape. In water, the polar hydroxyethyl side turns outward and the material becomes flexible. Pure pHEMA yields lenses that are too thick for sufficient oxygen to diffuse through, so all contact lenses that are pHEMA based are manufactured with copolymers that make the gel thinner and increase its water of hydration. [3] These copolymer hydrogel lenses are often suffixed "-filcon", such as Methafilcon, which is a copolymer of hydroxyethyl methacrylate and methyl methacrylate. Another copolymer hydrogel lens, called Polymacon, is a copolymer of hydroxyethyl methacrylate and ethylene glycol dimethacrylate.

Cell culture

pHEMA is commonly used to coat cell culture flasks in order to prevent cell adhesion and induce spheroid formation, particularly in cancer research. Older alternatives to pHEMA include agar and agarose gels. [4] [5]

Related Research Articles

Contact lens Lenses placed on the eyes surface

Contact lenses, or simply contacts, are thin lenses placed directly on the surface of the eyes. Contact lenses are ocular prosthetic devices used by over 150 million people worldwide, and they can be worn to correct vision or for cosmetic or therapeutic reasons. In 2010, the worldwide market for contact lenses was estimated at $6.1 billion, while the US soft lens market was estimated at $2.1 billion. Multiple analysts estimated that the global market for contact lenses would reach $11.7 billion by 2015. As of 2010, the average age of contact lens wearers globally was 31 years old, and two-thirds of wearers were female.

Poly(methyl methacrylate) Transparent thermoplastic, commonly called acrylic

Poly(methyl methacrylate) (PMMA) belongs to a group of materials called engineering plastics. It is a transparent thermoplastic. PMMA is also known as acrylic, acrylic glass, as well as by the trade names and brands Crylux, Plexiglas, Acrylite, Astariglas, Lucite, Perclax, and Perspex, among several others. This plastic is often used in sheet form as a lightweight or shatter-resistant alternative to glass. It can also be used as a casting resin, in inks and coatings, and for many other purposes.

Polyacrylamide Chemical compound

Polyacrylamide (abbreviated as PAM) is a polymer with the formula (-CH2CHCONH2-). It has a linear-chain structure. PAM is highly water-absorbent, forming a soft gel when hydrated. In 2008, an estimated 750,000,000 kg were produced, mainly for water treatment and the paper and mineral industries.

Otto Wichterle Czech chemist and inventor (1913–1998)

Otto Wichterle was a Czech chemist, best known for his invention of modern soft contact lenses.

Hydrogel

A hydrogel is a crosslinked hydrophilic polymer that does not dissolve in water. They are highly absorbent yet maintain well defined structures. These properties underpin several applications, especially in the biomedical area. Many hydrogels are synthetic, but some are derived from nature.

Drahoslav Lím was a Czech chemist. He invented polyhydroxyethylmethacrylate, the synthetic material used for soft contact lenses (hydrogel).

Ethylene glycol dimethacrylate Chemical compound

Ethylene glycol dimethylacrylate (EGDMA) is a diester formed by condensation of two equivalents of methacrylic acid and one equivalent of ethylene glycol.

Poly(methyl acrylate) Chemical compound

Poly(methyl acrylate) (PMA) is a hydrophobic synthetic acrylate polymer. PMA, though softer than polymethyl methacrylate (PMMA), is tough, leathery, and flexible.

Superabsorbent polymer Polymers that can absorb and retain extremely large amounts of a liquid relative to their own mass

A superabsorbent polymer (SAP) is a water-absorbing polymer that can absorb and retain extremely large amounts of a liquid relative to its own mass.

(Hydroxyethyl)methacrylate Chemical compound

Hydroxyethylmethacrylate or HEMA (also known as glycol methyacrylate, GMA) is the organic compound with the formula H2C=C(CH3)CO2CH2CH2OH. It is a colorless viscous liquid that readily polymerizes. HEMA is a monomer that is used to make various polymers.

Polyacrylic acid Anionic polyelectrolyte polymer

Poly(acrylic acid) (PAA; trade name Carbomer) is a polymer with the formula (CH2-CHCO2H)n. It is a derivative of acrylic acid (CH2=CHCO2H). In addition to the homopolymers, a variety of copolymers and crosslinked polymers, and partially deprotonated derivatives thereof are known and of commercial value. In a water solution at neutral pH, PAA is an anionic polymer, i.e., many of the side chains of PAA lose their protons and acquire a negative charge. Partially or wholly deprotonated PAAs are polyelectrolytes, with the ability to absorb and retain water and swell to many times their original volume. These properties - acid-base and water-attracting - are the bases of many applications.

Poly(N-isopropylacrylamide) is a temperature-responsive polymer that was first synthesized in the 1950s. It can be synthesized from N-isopropylacrylamide which is commercially available. It is synthesized via free-radical polymerization and is readily functionalized making it useful in a variety of applications.

Temperature-responsive polymer

Temperature-responsive polymers or thermoresponsive polymers are polymers that exhibit a drastic and discontinuous change of their physical properties with temperature. The term is commonly used when the property concerned is solubility in a given solvent, but it may also be used when other properties are affected. Thermoresponsive polymers belong to the class of stimuli-responsive materials, in contrast to temperature-sensitive materials, which change their properties continuously with environmental conditions. In a stricter sense, thermoresponsive polymers display a miscibility gap in their temperature-composition diagram. Depending on whether the miscibility gap is found at high or low temperatures, an upper or lower critical solution temperature exists, respectively.

2-Acrylamido-2-methylpropane sulfonic acid Chemical compound

2-Acrylamido-2-methylpropane sulfonic acid (AMPS) was a Trademark name by The Lubrizol Corporation. It is a reactive, hydrophilic, sulfonic acid acrylic monomer used to alter the chemical properties of wide variety of anionic polymers. In the 1970s, the earliest patents using this monomer were filed for acrylic fiber manufacturing. Today, there are over several thousands patents and publications involving use of AMPS in many areas including water treatment, oil field, construction chemicals, hydrogels for medical applications, personal care products, emulsion coatings, adhesives, and rheology modifiers.

Catalytic chain transfer (CCT) is a process that can be incorporated into radical polymerization to obtain greater control over the resulting products.

Jindřich Kopeček American chemist (born 1940)

Jindřich Henry Kopeček was born in Strakonice, Czech Republic, as the son of Jan and Herta Zita (Krombholz) Kopeček. He is distinguished professor of pharmaceutical chemistry and distinguished professor of biomedical engineering at the University of Utah in Salt Lake City, Utah. Kopeček is also an honorary professor at Sichuan University in Chengdu, China. His research focuses on biorecognition of macromolecules, bioconjugate chemistry, drug delivery systems, self-assembled biomaterials, and drug-free macromolecular therapeutics.

Poly(methacrylic acid) Chemical compound

Poly(methacrylic acid) (PMAA) is a polymer made from methacrylic acid, which is a carboxylic acid. It is often available as its sodium salt, poly(methacrylic acid) sodium salt. The monomer is a viscous liquid with a pungent odour. The first polymeric form of methacrylic acid was described in 1880 by Engelhorn and Fittig. The use of high purity monomers is required for proper polymerization conditions and therefore it is necessary to remove any inhibitors by extraction or via distillation. To prevent inhibition by dissolved oxygen, monomers should be carefully degassed prior to the start of the polymerization.

Self-healing hydrogels

Self-healing hydrogels are a specialized type of polymer hydrogel. A hydrogel is a macromolecular polymer gel constructed of a network of crosslinked polymer chains. Hydrogels are synthesized from hydrophilic monomers by either chain or step growth, along with a functional crosslinker to promote network formation. A net-like structure along with void imperfections enhance the hydrogel's ability to absorb large amounts of water via hydrogen bonding. As a result, hydrogels, self-healing alike, develop characteristic firm yet elastic mechanical properties. Self-healing refers to the spontaneous formation of new bonds when old bonds are broken within a material. The structure of the hydrogel along with electrostatic attraction forces drive new bond formation through reconstructive covalent dangling side chain or non-covalent hydrogen bonding. These flesh-like properties have motivated the research and development of self-healing hydrogels in fields such as reconstructive tissue engineering as scaffolding, as well as use in passive and preventive applications.

1-Vinylimidazole is a water-soluble basic monomer that forms quaternizable homopolymers by free-radical polymerization with a variety of vinyl and acrylic monomers. The products are functional copolymers, which are used as oil field chemicals and as cosmetic auxiliaries. 1-Vinylimidazole acts as a reactive diluent in UV lacquers, inks, and adhesives.

Pentaerythritol tetraacrylate Chemical compound

Pentaerythritol tetraacrylate is an organic compound. It is a tetrafunctional acrylate ester used as a monomer in the manufacture of polymers. As it is a polymerizable acrylate monomer it is nearly always supplied with a polymerisation inhibitor such as MEHQ added.

References

  1. Wichterle, O.; Lím, D. (1960). "Hydrophilic Gels for Biological Use". Nature. 185 (4706): 117–8. Bibcode:1960Natur.185..117W. doi:10.1038/185117a0. S2CID   4211987.
  2. Kyle, Robert A.; Steensma, David P.; Shampo, Marc A. (2016-03-01). "Otto Wichterle—Inventor of the First Soft Contact Lenses". Mayo Clinic Proceedings. 91 (3): e45–e46. doi: 10.1016/j.mayocp.2016.01.016 . ISSN   0025-6196. PMID   26944252.
  3. Ratner, Buddy D. (2004). Biomaterials Science, An Introduction to Materials in Medicine. Elsevier Academic Press. ISBN   0-12-582463-7.[ page needed ]
  4. Katt, Moriah E.; Placone, Amanda L.; Wong, Andrew D.; Xu, Zinnia S.; Searson, Peter C. (12 February 2016). "In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform". Frontiers in Bioengineering and Biotechnology. 4: 12. doi: 10.3389/fbioe.2016.00012 . PMC   4751256 . PMID   26904541.
  5. Friedrich, Juergen; Seidel, Claudia; Ebner, Reinhard; Kunz-Schughart, Leoni A (12 February 2009). "Spheroid-based drug screen: considerations and practical approach". Nature Protocols. 4 (3): 309–324. doi:10.1038/nprot.2008.226. PMID   19214182. S2CID   21783074.