The Polymorphic Programming Language (PPL) was developed in 1969 at Harvard University by Thomas A. Standish. It is an interactive, extensible language with a base language similar to the language APL. [1]
The assignment operator <-
(or ←
) has influenced the language S. [2]
ACL2 is a software system consisting of a programming language, an extensible theory in a first-order logic, and an automated theorem prover. ACL2 is designed to support automated reasoning in inductive logical theories, mostly for software and hardware verification. The input language and implementation of ACL2 are written in Common Lisp. ACL2 is free and open-source software.
Malcolm Douglas McIlroy is an American mathematician, engineer, and programmer. As of 2019 he is an Adjunct Professor of Computer Science at Dartmouth College. McIlroy is best known for having originally proposed Unix pipelines and developed several Unix tools, such as echo, spell, diff, sort, join, graph, speak, and tr. He was also one of the pioneering researchers of macro processors and programming language extensibility. He participated in the design of multiple influential programming languages, particularly PL/I, SNOBOL, ALTRAN, TMG and C++.
In programming language theory and type theory, polymorphism is the use of one symbol to represent multiple different types.
Type inference, sometimes called type reconstruction, refers to the automatic detection of the type of an expression in a formal language. These include programming languages and mathematical type systems, but also natural languages in some branches of computer science and linguistics.
In computing, an effect system is a formal system that describes the computational effects of computer programs, such as side effects. An effect system can be used to provide a compile-time check of the possible effects of the program.
IMP is an early systems programming language that was developed by Edgar T. Irons in the late 1960s through early 1970s, at the National Security Agency (NSA). Unlike most other systems languages, IMP supports syntax-extensible programming.
In computer software, a general-purpose programming language (GPL) is a programming language for building software in a wide variety of application domains. Conversely, a domain-specific programming language (DSL) is used within a specific area. For example, Python is a GPL, while SQL is a DSL for querying relational databases.
The history of programming languages spans from documentation of early mechanical computers to modern tools for software development. Early programming languages were highly specialized, relying on mathematical notation and similarly obscure syntax. Throughout the 20th century, research in compiler theory led to the creation of high-level programming languages, which use a more accessible syntax to communicate instructions.
SIGPLAN is the Association for Computing Machinery's Special Interest Group (SIG) on programming languages. This SIG explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users.
In computer science, extensible programming is a style of computer programming that focuses on mechanisms to extend the programming language, compiler, and runtime system (environment). Extensible programming languages, supporting this style of programming, were an active area of work in the 1960s, but the movement was marginalized in the 1970s. Extensible programming has become a topic of renewed interest in the 21st century.
John Charles Reynolds was an American computer scientist.
In programming languages and type theory, parametric polymorphism allows a single piece of code to be given a "generic" type, using variables in place of actual types, and then instantiated with particular types as needed. Parametrically polymorphic functions and data types are sometimes called generic functions and generic datatypes, respectively, and they form the basis of generic programming.
In computer science, a type class is a type system construct that supports ad hoc polymorphism. This is achieved by adding constraints to type variables in parametrically polymorphic types. Such a constraint typically involves a type class T
and a type variable a
, and means that a
can only be instantiated to a type whose members support the overloaded operations associated with T
.
An adaptive grammar is a formal grammar that explicitly provides mechanisms within the formalism to allow its own production rules to be manipulated.
In computing, a compiler is a computer program that transforms source code written in a programming language or computer language, into another computer language. The most common reason for transforming source code is to create an executable program.
The expression problem is a challenging problem in programming languages that concerns the extensibility and modularity of statically typed data abstractions. The goal is to define a data abstraction that is extensible both in its representations and its behaviors, where one can add new representations and new behaviors to the data abstraction, without recompiling existing code, and while retaining static type safety. The statement of the problem exposes deficiencies in programming paradigms and programming languages, and as of 2023 is still considered unsolved, although there are many proposed solutions.
In type theory, bounded quantification refers to universal or existential quantifiers which are restricted ("bounded") to range only over the subtypes of a particular type. Bounded quantification is an interaction of parametric polymorphism with subtyping. Bounded quantification has traditionally been studied in the functional setting of System F<:, but is available in modern object-oriented languages supporting parametric polymorphism (generics) such as Java, C# and Scala.
In computer science, polymorphic recursion refers to a recursive parametrically polymorphic function where the type parameter changes with each recursive invocation made, instead of staying constant. Type inference for polymorphic recursion is equivalent to semi-unification and therefore undecidable and requires the use of a semi-algorithm or programmer-supplied type annotations.
PPL or ppl may refer to:
Flix is a functional, imperative, and logic programming language developed at Aarhus University, with funding from the Independent Research Fund Denmark, and by a community of open source contributors. The Flix language supports algebraic data types, pattern matching, parametric polymorphism, currying, higher-order functions, extensible records, channel and process-based concurrency, and tail call elimination. Two notable features of Flix are its type and effect system and its support for first-class Datalog constraints.