Pontryagin's maximum principle

Last updated

Pontryagin's maximum principle is used in optimal control theory to find the best possible control for taking a dynamical system from one state to another, especially in the presence of constraints for the state or input controls. It states that it is necessary for any optimal control along with the optimal state trajectory to solve the so-called Hamiltonian system, which is a two-point boundary value problem, plus a maximum condition of the control Hamiltonian. [lower-alpha 1] These necessary conditions become sufficient under certain convexity conditions on the objective and constraint functions. [1] [2]

Contents

The maximum principle was formulated in 1956 by the Russian mathematician Lev Pontryagin and his students, [3] [4] and its initial application was to the maximization of the terminal speed of a rocket. [5] The result was derived using ideas from the classical calculus of variations. [6] After a slight perturbation of the optimal control, one considers the first-order term of a Taylor expansion with respect to the perturbation; sending the perturbation to zero leads to a variational inequality from which the maximum principle follows. [7]

Widely regarded as a milestone in optimal control theory, the significance of the maximum principle lies in the fact that maximizing the Hamiltonian is much easier than the original infinite-dimensional control problem; rather than maximizing over a function space, the problem is converted to a pointwise optimization. [8] A similar logic leads to Bellman's principle of optimality, a related approach to optimal control problems which states that the optimal trajectory remains optimal at intermediate points in time. [9] The resulting Hamilton–Jacobi–Bellman equation provides a necessary and sufficient condition for an optimum, and admits a straightforward extension to stochastic optimal control problems, whereas the maximum principle does not. [7] However, in contrast to the Hamilton–Jacobi–Bellman equation, which needs to hold over the entire state space to be valid, Pontryagin's Maximum Principle is potentially more computationally efficient in that the conditions which it specifies only need to hold over a particular trajectory.

Notation

For set and functions

,
,
,
,

we use the following notation:

,
,
,
,
.

Formal statement of necessary conditions for minimization problems

Here the necessary conditions are shown for minimization of a functional.

Consider an n-dimensional dynamical system, with state variable , and control variable , where is the set of admissible controls. The evolution of the system is determined by the state and the control, according to the differential equation . Let the system's initial state be and let the system's evolution be controlled over the time-period with values . The latter is determined by the following differential equation:

The control trajectory is to be chosen according to an objective. The objective is a functional defined by

,

where can be interpreted as the rate of cost for exerting control in state , and can be interpreted as the cost for ending up at state . The specific choice of depends on the application.

The constraints on the system dynamics can be adjoined to the Lagrangian by introducing time-varying Lagrange multiplier vector , whose elements are called the costates of the system. This motivates the construction of the Hamiltonian defined for all by:

where is the transpose of .

Pontryagin's minimum principle states that the optimal state trajectory , optimal control , and corresponding Lagrange multiplier vector must minimize the Hamiltonian so that

 

 

 

 

(1)

for all time and for all permissible control inputs . Here, the trajectory of the Lagrangian multiplier vector is the solution to the costate equation and its terminal conditions:

 

 

 

 

(2)

 

 

 

 

(3)

If is fixed, then these three conditions in (1)-(3) are the necessary conditions for an optimal control.

If the final state is not fixed (i.e., its differential variation is not zero), there is an additional condition

 

 

 

 

(4)

These four conditions in (1)-(4) are the necessary conditions for an optimal control.

See also

Notes

  1. Whether the extreme value is maximum or minimum depends on the sign convention used for defining the Hamiltonian. The historic convention leads to a maximum, hence maximum principle. In recent years, it is more commonly referred to as simply Pontryagin's Principle, without the use of the adjectives, maximum or minimum.

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints. It is named after the mathematician Joseph-Louis Lagrange.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large, the various physical quantities associated with the perturbed system can be expressed as "corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of the simpler one. In effect, it is describing a complicated unsolved system using a simple, solvable system.

<span class="mw-page-title-main">Optimal control</span> Mathematical way of attaining a desired output from a dynamic system

Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the Moon with minimum fuel expenditure. Or the dynamical system could be a nation's economy, with the objective to minimize unemployment; the controls in this case could be fiscal and monetary policy. A dynamical system may also be introduced to embed operations research problems within the framework of optimal control theory.

In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic.

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.

In quantum mechanics, the Hellmann–Feynman theorem relates the derivative of the total energy with respect to a parameter to the expectation value of the derivative of the Hamiltonian with respect to that same parameter. According to the theorem, once the spatial distribution of the electrons has been determined by solving the Schrödinger equation, all the forces in the system can be calculated using classical electrostatics.

In mathematics, the theta representation is a particular representation of the Heisenberg group of quantum mechanics. It gains its name from the fact that the Jacobi theta function is invariant under the action of a discrete subgroup of the Heisenberg group. The representation was popularized by David Mumford.

The Hamiltonian is a function used to solve a problem of optimal control for a dynamical system. It can be understood as an instantaneous increment of the Lagrangian expression of the problem that is to be optimized over a certain time period. Inspired by—but distinct from—the Hamiltonian of classical mechanics, the Hamiltonian of optimal control theory was developed by Lev Pontryagin as part of his maximum principle. Pontryagin proved that a necessary condition for solving the optimal control problem is that the control should be chosen so as to optimize the Hamiltonian.

In mathematics, the KdV hierarchy is an infinite sequence of partial differential equations which contains the Korteweg–de Vries equation.

<span class="mw-page-title-main">Stokes' theorem</span> Theorem in vector calculus

Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence: The line integral of a vector field over a loop is equal to its curl through the enclosed surface. It is illustrated in the figure, where the direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule. For the right hand the fingers circulate along ∂Σ and the thumb is directed along n.

Given a Hilbert space with a tensor product structure a product numerical range is defined as a numerical range with respect to the subset of product vectors. In some situations, especially in the context of quantum mechanics product numerical range is known as local numerical range

<span class="mw-page-title-main">Weyl equation</span> Relativistic wave equation describing massless fermions

In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

<span class="mw-page-title-main">Causal fermion systems</span> Candidate unified theory of physics

The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale. As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

Hamiltonian truncation is a numerical method used to study quantum field theories (QFTs) in spacetime dimensions. Hamiltonian truncation is an adaptation of the Rayleigh–Ritz method from quantum mechanics. It is closely related to the exact diagonalization method used to treat spin systems in condensed matter physics. The method is typically used to study QFTs on spacetimes of the form , specifically to compute the spectrum of the Hamiltonian along . A key feature of Hamiltonian truncation is that an explicit ultraviolet cutoff is introduced, akin to the lattice spacing a in lattice Monte Carlo methods. Since Hamiltonian truncation is a nonperturbative method, it can be used to study strong-coupling phenomena like spontaneous symmetry breaking.

References

  1. Mangasarian, O. L. (1966). "Sufficient Conditions for the Optimal Control of Nonlinear Systems". SIAM Journal on Control. 4 (1): 139–152. doi:10.1137/0304013.
  2. Kamien, Morton I.; Schwartz, Nancy L. (1971). "Sufficient Conditions in Optimal Control Theory". Journal of Economic Theory . 3 (2): 207–214. doi:10.1016/0022-0531(71)90018-4.
  3. Boltyanski, V.; Martini, H.; Soltan, V. (1998). "The Maximum Principle – How it came to be?". Geometric Methods and Optimization Problems. New York: Springer. pp. 204–227. ISBN   0-7923-5454-0.
  4. Gamkrelidze, R. V. (1999). "Discovery of the Maximum Principle". Journal of Dynamical and Control Systems. 5 (4): 437–451. doi:10.1023/A:1021783020548. S2CID   122690986. Reprinted in Bolibruch, A. A.; et al., eds. (2006). Mathematical Events of the Twentieth Century. Berlin: Springer. pp. 85–99. ISBN   3-540-23235-4.
  5. For first published works, see references in Fuller, A. T. (1963). "Bibliography of Pontryagin's Maximum Principle". J. Electronics & Control. 15 (5): 513–517. doi:10.1080/00207216308937602.
  6. McShane, E. J. (1989). "The Calculus of Variations from the Beginning Through Optimal Control Theory". SIAM J. Control Optim. 27 (5): 916–939. doi:10.1137/0327049.
  7. 1 2 Yong, J.; Zhou, X. Y. (1999). "Maximum Principle and Stochastic Hamiltonian Systems". Stochastic Controls: Hamiltonian Systems and HJB Equations . New York: Springer. pp.  101–156. ISBN   0-387-98723-1.
  8. Sastry, Shankar (March 29, 2009). "Lecture Notes 8. Optimal Control and Dynamic Games" (PDF).
  9. Zhou, X. Y. (1990). "Maximum Principle, Dynamic Programming, and their Connection in Deterministic Control". Journal of Optimization Theory and Applications. 65 (2): 363–373. doi:10.1007/BF01102352. S2CID   122333807.

Further reading