Poromechanics

Last updated

Poromechanics is a branch of physics and specifically continuum mechanics and acoustics that studies the behaviour of fluid-saturated porous media. [1] A porous medium or a porous material is a solid referred to as matrix) permeated by an interconnected network of pores (voids) filled with a fluid (liquid or gas). Usually both solid matrix and the pore network, or pore space, are assumed to be continuous, so as to form two interpenetrating continua such as in a sponge. Natural substances including rocks, [2] soils, [3] biological tissues including heart [4] and cancellous bone, [5] and man-made materials such as foams and ceramics can be considered as porous media. Porous media whose solid matrix is elastic and the fluid is viscous are called poroelastic. A poroelastic medium is characterised by its porosity, permeability as well as the properties of its constituents (solid matrix and fluid). The distribution of pores across multiple scales as well as the pressure of the fluid with which they are filled give rise to distinct elastic behaviour of the bulk. [6]

Contents

The concept of a porous medium originally emerged in soil mechanics, and in particular in the works of Karl von Terzaghi, the father of soil mechanics. [7] However a more general concept of a poroelastic medium, independent of its nature or application, is usually attributed to Maurice Anthony Biot (1905–1985), a Belgian-American engineer. In a series of papers published between 1935 and 1962 Biot developed the theory of dynamic poroelasticity (now known as Biot theory) which gives a complete and general description of the mechanical behaviour of a poroelastic medium. [8] [9] [10] [11] [12] Biot's equations of the linear theory of poroelasticity are derived from the equations of linear elasticity for a solid matrix, the Navier–Stokes equations for a viscous fluid, and Darcy's law for a flow of fluid through a porous matrix.

One of the key findings of the theory of poroelasticity is that in poroelastic media there exist three types of elastic waves: a shear or transverse wave, and two types of longitudinal or compressional waves, which Biot called type I and type II waves. The transverse and type I (or fast) longitudinal wave are similar to the transverse and longitudinal waves in an elastic solid, respectively. The slow compressional wave, (also known as Biot’s slow wave) is unique to poroelastic materials. The prediction of the Biot’s slow wave generated some controversy, until it was experimentally observed by Thomas Plona in 1980. [13] Other important early contributors to the theory of poroelasticity were Yakov Frenkel and Fritz Gassmann. [14] [15] [16]

Conversion of energy from fast compressional and shear waves into the highly attenuating slow compressional wave is a significant cause of elastic wave attenuation in porous media.

Recent applications of poroelasticity to biology such as modeling of blood flows through the beating myocardium have also required an extension of the equations to nonlinear (large deformation) elasticity and the inclusion of inertia forces.

See also

Related Research Articles

<span class="mw-page-title-main">Wave</span> Repeated oscillation around equilibrium

In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a traveling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero. Waves are often described by a wave equation or a one-way wave equation for single wave propagation in a defined direction.

In physics, attenuation is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at variable attenuation rates.

<span class="mw-page-title-main">Longitudinal wave</span> Waves in which the direction of media displacement is parallel (along) to the direction of travel

Longitudinal waves are waves in which the vibration of the medium is parallel to the direction the wave travels and displacement of the medium is in the same direction of the wave propagation. Mechanical longitudinal waves are also called compressional or compression waves, because they produce compression and rarefaction when traveling through a medium, and pressure waves, because they produce increases and decreases in pressure. A wave along the length of a stretched Slinky toy, where the distance between coils increases and decreases, is a good visualization. Real-world examples include sound waves and seismic P-waves.

Permeability in fluid mechanics and the Earth sciences is a measure of the ability of a porous material to allow fluids to pass through it.

<span class="mw-page-title-main">Porous medium</span> Material containing fluid-filled voids

In materials science, a porous medium or a porous material is a material containing pores (voids). The skeletal portion of the material is often called the "matrix" or "frame". The pores are typically filled with a fluid. The skeletal material is usually a solid, but structures like foams are often also usefully analyzed using concept of porous media.

Maurice Anthony Biot was a Belgian-American applied physicist. He made contributions in thermodynamics, aeronautics, geophysics, earthquake engineering, and electromagnetism. Particularly, he was accredited as the founder of the theory of poroelasticity.

Poroelasticity is a field in materials science and mechanics that studies the interaction between fluid flow, pressure and bulk solid deformation within a linear porous medium and it is an extension of elasticity and porous medium flow. The deformation of the medium influences the flow of the fluid and vice versa. The theory was proposed by Maurice Anthony Biot as a theoretical extension of soil consolidation models developed to calculate the settlement of structures placed on fluid-saturated porous soils. The theory of poroelasticity has been widely applied in geomechanics, hydrology, biomechanics, tissue mechanics, cell mechanics, and micromechanics.

<span class="mw-page-title-main">Effective stress</span>

The effective stress can be defined as the stress, depending on the applied tension and pore pressure , which controls the strain or strength behaviour of soil and rock for whatever pore pressure value or, in other terms, the stress which applied over a dry porous body provides the same strain or strength behaviour which is observed at ≠ 0. In the case of granular media it can be viewed as a force that keeps a collection of particles rigid. Usually this applies to sand, soil, or gravel, as well as every kind of rock and several other porous materials such as concrete, metal powders, biological tissues etc. The usefulness of an appropriate ESP formulation consists in allowing to assess the behaviour of a porous body for whatever pore pressure value on the basis of experiments involving dry samples.

<span class="mw-page-title-main">Soil consolidation</span>

Soil consolidation refers to the mechanical process by which soil changes volume gradually in response to a change in pressure. This happens because soil is a two-phase material, comprising soil grains and pore fluid, usually groundwater. When soil saturated with water is subjected to an increase in pressure, the high volumetric stiffness of water compared to the soil matrix means that the water initially absorbs all the change in pressure without changing volume, creating excess pore water pressure. As water diffuses away from regions of high pressure due to seepage, the soil matrix gradually takes up the pressure change and shrinks in volume. The theoretical framework of consolidation is therefore closely related to the concept of effective stress, and hydraulic conductivity. The early theoretical modern models were proposed one century ago, according to two different approaches, by Karl Terzaghi and Paul Fillunger. The Terzaghi’s model is currently the most utilized in engineering practice and is based on the diffusion equation.

Acoustic waves are a type of energy propagation through a medium by means of adiabatic loading and unloading. Important quantities for describing acoustic waves are acoustic pressure, particle velocity, particle displacement and acoustic intensity. Acoustic waves travel with a characteristic acoustic velocity that depends on the medium they're passing through. Some examples of acoustic waves are audible sound from a speaker, seismic waves, or ultrasound used for medical imaging.

<span class="mw-page-title-main">Tortuosity</span> Parameter for diffusion and fluid flow in porous media

Tortuosity is widely used as a critical parameter to predict transport properties of porous media, such as rocks and soils. But unlike other standard microstructural properties, the concept of tortuosity is vague with multiple definitions and various evaluation methods introduced in different contexts. Hydraulic, electrical, diffusional, and thermal tortuosities are defined to describe different transport processes in porous media, while geometrical tortuosity is introduced to characterize the morphological property of porous microstructures.

Terzaghi's Principle states that when stress is applied to a porous material, it is opposed by the fluid pressure filling the pores in the material.

Porosity or void fraction is a measure of the void spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure the "accessible void", the total amount of void space accessible from the surface.

<span class="mw-page-title-main">Acoustic metamaterial</span> Material designed to manipulate sound waves

An acoustic metamaterial, sonic crystal, or phononic crystal is a material designed to control, direct, and manipulate sound waves or phonons in gases, liquids, and solids. Sound wave control is accomplished through manipulating parameters such as the bulk modulus β, density ρ, and chirality. They can be engineered to either transmit, or trap and amplify sound waves at certain frequencies. In the latter case, the material is an acoustic resonator.

A seismic metamaterial, is a metamaterial that is designed to counteract the adverse effects of seismic waves on artificial structures, which exist on or near the surface of the Earth. Current designs of seismic metamaterials utilize configurations of boreholes, trees or proposed underground resonators to act as a large scale material. Experiments have observed both reflections and bandgap attenuation from artificially induced seismic waves. These are the first experiments to verify that seismic metamaterials can be measured for frequencies below 100 Hz, where damage from Rayleigh waves is the most harmful to artificial structures.

In the mathematical modeling of seismic waves, the Cagniard–De Hoop method is a sophisticated mathematical tool for solving a large class of wave and diffusive problems in horizontally layered media. The method is based on the combination of a unilateral Laplace transformation with the real-valued and positive transform parameter and the slowness field representation. It is named after Louis Cagniard and Adrianus de Hoop; Cagniard published his method in 1939, and De Hoop published an ingenious improvement on it in 1960.

Gassmann's equations are a set of two equations describing the isotropic elastic constants of an ensemble consisting of an isotropic, homogeneous porous medium with a fully connected pore space, saturated by a compressible fluid at pressure equilibrium.

In acoustics, acoustic attenuation is a measure of the energy loss of sound propagation through an acoustic transmission medium. Most media have viscosity and are therefore not ideal media. When sound propagates in such media, there is always thermal consumption of energy caused by viscosity. This effect can be quantified through the Stokes's law of sound attenuation. Sound attenuation may also be a result of heat conductivity in the media as has been shown by G. Kirchhoff in 1868. The Stokes-Kirchhoff attenuation formula takes into account both viscosity and thermal conductivity effects.

Infrasonic passive seismic spectroscopy (IPSS) is a passive seismic low frequency technique used for mapping potential oil and gas hydrocarbon accumulations.

<span class="mw-page-title-main">Pore structure</span>

Pore structure is a common term employed to characterize the porosity, pore size, pore size distribution, and pore morphology of a porous medium. Pores are the openings in the surfaces impermeable porous matrix which gases, liquids, or even foreign microscopic particles can inhabit them. The pore structure and fluid flow in porous media are intimately related.

References

  1. Coussy O (2004). Poromechanics. Hoboken: John Wiley & Sons.
  2. Müller TM, Gurevich B, Lebedev M (2010). "Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks: a review". Geophysics. 75 (5): 75A147–75A164. Bibcode:2010Geop...75A.147M. doi:10.1190/1.3463417. hdl: 20.500.11937/35921 .
  3. Wang HF (2000). Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton: Princeton University Press. ISBN   9780691037462.
  4. Chapelle D, Gerbeau JF, Sainte-Marie J, Vignon-Clementel I (2010). "A poroelastic model valid in large strains with applications to perfusion in cardiac modeling". Computational Mechanics. 46: 91–101. Bibcode:2010CompM..46..101C. doi:10.1007/s00466-009-0452-x. S2CID   18226623.
  5. Aygün H, Attenborough K, Postema M, Lauriks W, Langton C (2009). "Predictions of angle dependent tortuosity and elasticity effects on sound propagation in cancellous bone" (PDF). Journal of the Acoustical Society of America. 126 (6): 3286–3290. doi:10.1121/1.3242358. PMID   20000942. S2CID   36340512.
  6. Multiscale modeling of effective elastic properties of fluid-filled porous materials International Journal of Solids and Structures (2019) 162, 36-44
  7. Terzaghi K (1943). Theoretical Soil Mechanics. New York: Wiley. doi:10.1002/9780470172766. ISBN   9780471853053.
  8. Biot MA (1941). "General theory of three dimensional consolidation" (PDF). Journal of Applied Physics. 12 (2): 155–164. Bibcode:1941JAP....12..155B. doi:10.1063/1.1712886.
  9. Biot MA (1956). "Theory of propagation of elastic waves in a fluid saturated porous solid. I Low frequency range" (PDF). The Journal of the Acoustical Society of America. 28 (2): 168–178. Bibcode:1956ASAJ...28..168B. doi:10.1121/1.1908239.
  10. Biot MA (1956). "Theory of propagation of elastic waves in a fluid saturated porous solid. II Higher frequency range" (PDF). The Journal of the Acoustical Society of America. 28 (2): 179–191. Bibcode:1956ASAJ...28..179B. doi:10.1121/1.1908241.
  11. Biot MA, Willis DG (1957). "The elastic coefficients of the theory of consolidation". Journal of Applied Mechanics. 24 (4): 594–601. Bibcode:1957JAM....24..594B. doi:10.1115/1.4011606.
  12. Biot MA (1962). "Mechanics of deformation and acoustic propagation in porous media". Journal of Applied Physics. 33 (4): 1482–1498. Bibcode:1962JAP....33.1482B. doi:10.1063/1.1728759. S2CID   58914453.
  13. Plona T (1980). "Observation of a Second Bulk Compressional Wave in a Porous Medium at Ultrasonic Frequencies". Applied Physics Letters. 36 (4): 259. Bibcode:1980ApPhL..36..259P. doi:10.1063/1.91445.
  14. Frenkel J (1944). "On the theory of seismic and seismoelectric phenomena in moist soil" (PDF). Journal of Physics. 3 (4): 230–241. Republished as Frenkel J (2005). "On the Theory of Seismic and Seismoelectric Phenomena in a Moist Soil". Journal of Engineering Mechanics. 131 (9): 879–887. doi:10.1061/(ASCE)0733-9399(2005)131:9(879).
  15. Gassmann F (1951). "Über die Elastizität poröser Medien". Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich. 96: 1–23. (English translation available as pdf here)
  16. Gassmann F (1951). "Elastic waves through a packing of spheres". Geophysics. 16 (4): 673–685. Bibcode:1951Geop...16..673G. doi:10.1190/1.1437718.

Further reading