Potential evapotranspiration (PET) or potential evaporation (PE) is the amount of water that would be evaporated and transpired by a specific crop, soil or ecosystem if there was sufficient water available. It is a reflection of the energy available to evaporate or transpire water, and of the wind available to transport the water vapor from the ground up into the lower atmosphere and away from the initial location. Potential evapotranspiration is expressed in terms of a depth of water or soil moisture percentage.
If the actual evapotranspiration is considered the net result of atmospheric demand for moisture from a surface and the ability of the surface to supply moisture, then PET is a measure of the demand side (also called evaporative demand). Surface and air temperatures, insolation, and wind all affect this. A dryland is a place where annual potential evaporation exceeds annual precipitation.
Often a value for the potential evapotranspiration is calculated at a nearby climatic station on a reference surface, conventionally on land dominated by short grass (though this may differ from station to station). This value is called the reference evapotranspiration (ET0). Actual evapotranspiration is said to equal potential evapotranspiration when there is ample water present. Evapotranspiration can never be greater than potential evapotranspiration, but can be lower if there is not enough water to be evaporated or plants are unable to transpire maturely and readily. Some US states utilize a full cover alfalfa reference crop that is 0.5 m (1.6 ft) in height, rather than the general short green grass reference, due to the higher value of ET from the alfalfa reference. [1]
Potential evapotranspiration is higher in the summer, on clearer and less cloudy days, and closer to the equator, because of the higher levels of solar radiation that provides the energy (heat) for evaporation. Potential evapotranspiration is also higher on windy days because the evaporated moisture can be quickly moved from the ground or plant surface before it precipitates, allowing more evaporation to fill its place.
Potential evapotranspiration is usually measured indirectly, from other climatic factors, but also depends on the surface type, such as free water (for lakes and oceans), the soil type for bare soil, and also the density and diversity of vegetation. Often a value for the potential evapotranspiration is calculated at a nearby climate station on a reference surface, conventionally on short grass. This value is called the reference evapotranspiration, and can be converted to a potential evapotranspiration by multiplying by a surface coefficient. In agriculture, this is called a crop coefficient. The difference between potential evapotranspiration and actual precipitation is used in irrigation scheduling.
Average annual potential evapotranspiration is often compared to average annual precipitation, the symbol for which is P. The ratio of the two, P/PET, is the aridity index. A humid subtropical climate is a zone of climate with hot and humid summers, and cold to mild winters. Subarctic regions, between 50°N [2] and 70°N latitude, have short, mild summers and freezing winters depending on local climates. Precipitation and evapotranspiration is low (compared to warmer variants), and vegetation is characteristic of the coniferous/taiga forest.
Where
is the estimated potential evapotranspiration (mm/month)
is the average daily temperature (degrees Celsius; if this is negative, use ) of the month being calculated
is the number of days in the month being calculated
is the average day length (hours) of the month being calculated
is a heat index which depends on the 12 monthly mean temperatures . [3]
Somewhat modified forms of this equation appear in later publications (1955 and 1957) by C. W. Thornthwaite and Mather. [4]
The Penman equation describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is impractical, to give comparable results within specific contexts, e.g. humid vs arid climates.
The Penman–Monteith equation refines weather based evapotranspiration (ET) estimates of vegetated land areas. This equation was then derived by FAO for retrieving the potential evapotranspiration ET0. [5] It is widely regarded as one of the most accurate models, in terms of estimates.
N.B.: The coefficients 0.408 and 900 are not unitless but account for the conversion from energy values to equivalent water depths: radiation [mm day−1] = 0.408 radiation [MJ m−2 day−1].
The Priestley–Taylor equation was developed as a substitute to the Penman–Monteith equation to remove dependence on observations. For Priestley–Taylor, only radiation (irradiance) observations are required. This is done by removing the aerodynamic terms from the Penman–Monteith equation and adding an empirically derived constant factor, .
The underlying concept behind the Priestley–Taylor model is that an air mass moving above a vegetated area with abundant water would become saturated with water. In these conditions, the actual evapotranspiration would match the Penman rate of potential evapotranspiration. However, observations revealed that actual evaporation was 1.26 times greater than potential evaporation, and therefore the equation for actual evaporation was found by taking potential evapotranspiration and multiplying it by . The assumption here is for vegetation with an abundant water supply (i.e. the plants have low moisture stress). Areas like arid regions with high moisture stress are estimated to have higher values. [6]
The assumption that an air mass moving over a vegetated surface with abundant water saturates has been questioned later. The lowest and turbulent part of the atmosphere, the atmospheric boundary layer, is not a closed box, but constantly brings in dry air from higher up in the atmosphere towards the surface. As water evaporates more easily into a dry atmosphere, evapotranspiration is enhanced. This explains the larger than unity value of the Priestley-Taylor parameter . The proper equilibrium of the system has been derived and involves the characteristics of the interface of the atmospheric boundary layer and the overlying free atmosphere. [7] [8]
In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars.
Evapotranspiration (ET) refers to the combined processes which move water from the Earth's surface into the atmosphere. It covers both water evaporation and transpiration. Evapotranspiration is an important part of the local water cycle and climate, and measurement of it plays a key role in water resource management agricultural irrigation.
The Bowen ratio is used to describe the type of heat transfer for a surface that has moisture. Heat transfer can either occur as sensible heat or latent heat. The Bowen ratio is generally used to calculate heat lost in a substance; it is the ratio of energy fluxes from one state to another by sensible heat and latent heating respectively.
The lapse rate is the rate at which an atmospheric variable, normally temperature in Earth's atmosphere, falls with altitude. Lapse rate arises from the word lapse. In dry air, the adiabatic lapse rate is 9.8 °C/km. The saturated adiabatic lapse rate (SALR), or moist adiabatic lapse rate (MALR), is the decrease in temperature of a parcel of water-saturated air that rises in the atmosphere. It varies with the temperature and pressure of the parcel and is often in the range 3.6 to 9.2 °C/km, as obtained from the International Civil Aviation Organization (ICAO). The environmental lapse rate is the decrease in temperature of air with altitude for a specific time and place. It can be highly variable between circumstances.
Fractional calculus is a branch of mathematical analysis that studies the several different possibilities of defining real number powers or complex number powers of the differentiation operator
The primitive equations are a set of nonlinear partial differential equations that are used to approximate global atmospheric flow and are used in most atmospheric models. They consist of three main sets of balance equations:
The Penman equation describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is impractical, to give comparable results within specific contexts, e.g. humid vs arid climates.
An ideal Bose gas is a quantum-mechanical phase of matter, analogous to a classical ideal gas. It is composed of bosons, which have an integer value of spin and abide by Bose–Einstein statistics. The statistical mechanics of bosons were developed by Satyendra Nath Bose for a photon gas and extended to massive particles by Albert Einstein, who realized that an ideal gas of bosons would form a condensate at a low enough temperature, unlike a classical ideal gas. This condensate is known as a Bose–Einstein condensate.
Thermal expansion is the tendency of matter to increase in length, area, or volume, changing its size and density, in response to an increase in temperature . Substances usually contract with decreasing temperature, with rare exceptions within limited temperature ranges.
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.
In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.
Radiative transfer is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of radiative transfer have application in a wide variety of subjects including optics, astrophysics, atmospheric science, and remote sensing. Analytic solutions to the radiative transfer equation (RTE) exist for simple cases but for more realistic media, with complex multiple scattering effects, numerical methods are required. The present article is largely focused on the condition of radiative equilibrium.
An aridity index (AI) is a numerical indicator of the degree of dryness of the climate at a given location. The American Meteorological Society defined it in meteorology and climatology, as "the degree to which a climate lacks effective, life-promoting moisture". Aridity is different from drought because aridity is permanent whereas drought is temporary. A number of aridity indices have been proposed ; these indicators serve to identify, locate or delimit regions that suffer from a deficit of available water, a condition that can severely affect the effective use of the land for such activities as agriculture or stock-farming.
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931. It is a quasilinear partial differential equation; its analytical solution is often limited to specific initial and boundary conditions. Proof of the existence and uniqueness of solution was given only in 1983 by Alt and Luckhaus. The equation is based on Darcy-Buckingham law representing flow in porous media under variably saturated conditions, which is stated as
In thermodynamics, a material's thermal effusivity, also known as thermal responsivity, is a measure of its ability to exchange thermal energy with its surroundings. It is defined as the square root of the product of the material's thermal conductivity and its volumetric heat capacity or as the ratio of thermal conductivity to the square root of thermal diffusivity.
The Penman-Monteith equation approximates net evapotranspiration (ET) from meteorological data as a replacement for direct measurement of evapotranspiration. The equation is widely used, and was derived by the United Nations Food and Agriculture Organization for modeling reference evapotranspiration ET0.
The temperatures of a planet's surface and atmosphere are governed by a delicate balancing of their energy flows. The idealized greenhouse model is based on the fact that certain gases in the Earth's atmosphere, including carbon dioxide and water vapour, are transparent to the high-frequency solar radiation, but are much more opaque to the lower frequency infrared radiation leaving Earth's surface. Thus heat is easily let in, but is partially trapped by these gases as it tries to leave. Rather than get hotter and hotter, Kirchhoff's law of thermal radiation says that the gases of the atmosphere also have to re-emit the infrared energy that they absorb, and they do so, also at long infrared wavelengths, both upwards into space as well as downwards back towards the Earth's surface. In the long-term, the planet's thermal inertia is surmounted and a new thermal equilibrium is reached when all energy arriving on the planet is leaving again at the same rate. In this steady-state model, the greenhouse gases cause the surface of the planet to be warmer than it would be without them, in order for a balanced amount of heat energy to finally be radiated out into space from the top of the atmosphere.
The grey atmosphere is a useful set of approximations made for radiative transfer applications in studies of stellar atmospheres based on the simplified notion that the absorption coefficient of matter within a star's atmosphere is constant—that is, unchanging—for all frequencies of the star's incident radiation.
In physics, Liouville field theory is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation.
The Thornthwaite climate classification is a climate classification system created by American climatologist Charles Warren Thornthwaite in 1931 and modified in 1948.