Potential evapotranspiration

Last updated
This animation shows the projected increase in potential evaporation in North America through the year 2100, relative to 1980, based on the combined results of multiple climate models.

Potential evapotranspiration (PET) or potential evaporation (PE) is the amount of water that would be evaporated and transpired by a specific crop, soil or ecosystem if there was sufficient water available. It is a reflection of the energy available to evaporate or transpire water, and of the wind available to transport the water vapor from the ground up into the lower atmosphere and away from the initial location. Potential evapotranspiration is expressed in terms of a depth of water or soil moisture percentage.

Contents

If the actual evapotranspiration is considered the net result of atmospheric demand for moisture from a surface and the ability of the surface to supply moisture, then PET is a measure of the demand side (also called evaporative demand). Surface and air temperatures, insolation, and wind all affect this. A dryland is a place where annual potential evaporation exceeds annual precipitation.

Often a value for the potential evapotranspiration is calculated at a nearby climatic station on a reference surface, conventionally on land dominated by short grass (though this may differ from station to station). This value is called the reference evapotranspiration (ET0). Actual evapotranspiration is said to equal potential evapotranspiration when there is ample water present. Evapotranspiration can never be greater than potential evapotranspiration, but can be lower if there is not enough water to be evaporated or plants are unable to transpire maturely and readily. Some US states utilize a full cover alfalfa reference crop that is 0.5 m (1.6 ft) in height, rather than the general short green grass reference, due to the higher value of ET from the alfalfa reference. [1]

Potential evapotranspiration is higher in the summer, on clearer and less cloudy days, and closer to the equator, because of the higher levels of solar radiation that provides the energy (heat) for evaporation. Potential evapotranspiration is also higher on windy days because the evaporated moisture can be quickly moved from the ground or plant surface before it precipitates, allowing more evaporation to fill its place.

Measurements

Monthly estimated potential evapotranspiration and measured pan evaporation for two locations in Hawaii, Hilo and Pahala Potential evapotranspiration Hawaii.gif
Monthly estimated potential evapotranspiration and measured pan evaporation for two locations in Hawaii, Hilo and Pahala

Potential evapotranspiration is usually measured indirectly, from other climatic factors, but also depends on the surface type, such as free water (for lakes and oceans), the soil type for bare soil, and also the density and diversity of vegetation. Often a value for the potential evapotranspiration is calculated at a nearby climate station on a reference surface, conventionally on short grass. This value is called the reference evapotranspiration, and can be converted to a potential evapotranspiration by multiplying by a surface coefficient. In agriculture, this is called a crop coefficient. The difference between potential evapotranspiration and actual precipitation is used in irrigation scheduling.

Average annual potential evapotranspiration is often compared to average annual precipitation, the symbol for which is P. The ratio of the two, P/PET, is the aridity index. A humid subtropical climate is a zone of climate with hot and humid summers, and cold to mild winters. Subarctic regions, between 50°N [2] and 70°N latitude, have short, mild summers and freezing winters depending on local climates. Precipitation and evapotranspiration is low (compared to warmer variants), and vegetation is characteristic of the coniferous/taiga forest.

Estimates of potential evaporation

Thornthwaite equation (1948)

Where

is the estimated potential evapotranspiration (mm/month)

is the average daily temperature (degrees Celsius; if this is negative, use ) of the month being calculated

is the number of days in the month being calculated

is the average day length (hours) of the month being calculated

is a heat index which depends on the 12 monthly mean temperatures . [3]

Somewhat modified forms of this equation appear in later publications (1955 and 1957) by Thornthwaite and Mather. [4]

Penman equation (1948)

The Penman equation describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is impractical, to give comparable results within specific contexts, e.g. humid vs arid climates.

FAO 56 Penman–Monteith equation (1998)

The Penman–Monteith equation refines weather based evapotranspiration (ET) estimates of vegetated land areas. This equation was then derived by FAO for retrieving the potential evapotranspiration 0. [5] It is widely regarded as one of the most accurate models, in terms of estimates.

ET0 = Potential evapotranspiration, Water volume evapotranspired (mm day−1)
Δ = Rate of change of saturation specific humidity with air temperature. (Pa K−1)
Rn = Net irradiance (MJ m−2 day−1), the external source of energy flux
G = Ground heat flux (MJ m−2 day−1), usually equivalent to zero on a day
T = Air temperature at 2m (K)
u_2 = Wind speed at 2m height (m−1)
δe = vapor pressure deficit (kPa)
γ = Psychrometric constant (γ ≈ 66 Pa K−1)

N.B.: The coefficient 0.408 and 900 are not unitless but account for the conversion from energy values to equivalent water depths: radiation [mm day−1] = 0.408 radiation [MJ m−2 day−1].

Priestley–Taylor equation

The Priestley–Taylor equation was developed as a substitute to the Penman–Monteith equation to remove dependence on observations. For Priestley–Taylor, only radiation (irradiance) observations are required. This is done by removing the aerodynamic terms from the Penman–Monteith equation and adding an empirically derived constant factor, .

The underlying concept behind the Priestley–Taylor model is that an air mass moving above a vegetated area with abundant water would become saturated with water. In these conditions, the actual evapotranspiration would match the Penman rate of potential evapotranspiration. However, observations revealed that actual evaporation was 1.26 times greater than potential evaporation, and therefore the equation for actual evaporation was found by taking potential evapotranspiration and multiplying it by . The assumption here is for vegetation with an abundant water supply (i.e. the plants have low moisture stress). Areas like arid regions with high moisture stress are estimated to have higher values. [6]

The assumption that an air mass moving over a vegetated surface with abundant water saturates has been questioned later. The lowest and turbulent part of the atmosphere, the atmospheric boundary layer, is not a closed box, but constantly brings in dry air from higher up in the atmosphere towards the surface. As water evaporates more easily into a dry atmosphere, evapotranspiration is enhanced. This explains the larger than unity value of the Priestley-Taylor parameter . The proper equilibrium of the system has been derived and involves the characteristics of the interface of the atmospheric boundary layer and the overlying free atmosphere. [7] [8]

See also

Related Research Articles

<span class="mw-page-title-main">Adiabatic process</span> Thermodynamic process in which no mass or heat is exchanged with surroundings

An adiabatic process is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work. As a key concept in thermodynamics, the adiabatic process supports the theory that explains the first law of thermodynamics.

<span class="mw-page-title-main">Troposphere</span> Lowest layer of Earths atmosphere

The troposphere is the lowest layer of the atmosphere of Earth. It contains 75% of the total mass of the planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the planetary surface of the Earth, the average height of the troposphere is 18 km in the tropics; 17 km in the middle latitudes; and 6 km in the high latitudes of the polar regions in winter; thus the average height of the troposphere is 13 km.

<span class="mw-page-title-main">Dew point</span> Temperature at which air becomes saturated with water vapour during a cooling process

The dew point of a given body of air is the temperature to which it must be cooled to become saturated with water vapor. This temperature depends on the pressure and water content of the air. When the air is cooled below the dew point, its moisture capacity is reduced and airborne water vapor will condense to form liquid water known as dew. When this occurs through the air's contact with a colder surface, dew will form on that surface.

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

<span class="mw-page-title-main">Evapotranspiration</span> Natural processes of water movement within the water cycle

Evapotranspiration (ET) is the combined processes which move water from the Earth's surface into the atmosphere. It covers both water evaporation and transpiration. Evapotranspiration is an important part of the local water cycle and climate, and measurement of it plays a key role in agricultural irrigation and water resource management.

The Bowen ratio is used to describe the type of heat transfer for a surface that has moisture. Heat transfer can either occur as sensible heat or latent heat. The Bowen ratio is generally used to calculate heat lost in a substance; it is the ratio of energy fluxes from one state to another by sensible heat and latent heating respectively.

<span class="mw-page-title-main">Surface energy</span> Excess energy at the surface of a material relative to its interior

In surface science, surface energy quantifies the disruption of intermolecular bonds that occurs when a surface is created. In solid-state physics, surfaces must be intrinsically less energetically favorable than the bulk of the material, otherwise there would be a driving force for surfaces to be created, removing the bulk of the material. The surface energy may therefore be defined as the excess energy at the surface of a material compared to the bulk, or it is the work required to build an area of a particular surface. Another way to view the surface energy is to relate it to the work required to cut a bulk sample, creating two surfaces. There is "excess energy" as a result of the now-incomplete, unrealized bonding between the two created surfaces.

The Penman equation describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is impractical, to give comparable results within specific contexts, e.g. humid vs arid climates.

<span class="mw-page-title-main">Bose gas</span> State of matter of many bosons

An ideal Bose gas is a quantum-mechanical phase of matter, analogous to a classical ideal gas. It is composed of bosons, which have an integer value of spin, and abide by Bose–Einstein statistics. The statistical mechanics of bosons were developed by Satyendra Nath Bose for a photon gas, and extended to massive particles by Albert Einstein who realized that an ideal gas of bosons would form a condensate at a low enough temperature, unlike a classical ideal gas. This condensate is known as a Bose–Einstein condensate.

In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. Analogously, expressions involving gases can be adjusted for non-ideality by scaling partial pressures by a fugacity coefficient.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.

An aridity index (AI) is a numerical indicator of the degree of dryness of the climate at a given location. The American Meteorological Society defined it in meteorology and climatology, as "the degree to which a climate lacks effective, life-promoting moisture". Aridity is different from drought because aridity is permanent whereas drought is temporary. A number of aridity indices have been proposed ; these indicators serve to identify, locate or delimit regions that suffer from a deficit of available water, a condition that can severely affect the effective use of the land for such activities as agriculture or stock-farming.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

The Gibbs adsorption isotherm for multicomponent systems is an equation used to relate the changes in concentration of a component in contact with a surface with changes in the surface tension, which results in a corresponding change in surface energy. For a binary system, the Gibbs adsorption equation in terms of surface excess is:

The Penman–Monteith equation approximates net evapotranspiration (ET) from meteorological data, as a replacement for direct measurement of evapotranspiration. The equation is widely used, and was derived by the United Nations Food and Agriculture Organization for modeling reference evapotranspiration ET0.

<span class="mw-page-title-main">Idealized greenhouse model</span> Mathematical estimate of planetary temperatures

The temperatures of a planet's surface and atmosphere are governed by a delicate balancing of their energy flows. The idealized greenhouse model is based on the fact that certain gases in the Earth's atmosphere, including carbon dioxide and water vapour, are transparent to the high-frequency solar radiation, but are much more opaque to the lower frequency infrared radiation leaving Earth's surface. Thus heat is easily let in, but is partially trapped by these gases as it tries to leave. Rather than get hotter and hotter, Kirchhoff's law of thermal radiation says that the gases of the atmosphere also have to re-emit the infrared energy that they absorb, and they do so, also at long infrared wavelengths, both upwards into space as well as downwards back towards the Earth's surface. In the long-term, the planet's thermal inertia is surmounted and a new thermal equilibrium is reached when all energy arriving on the planet is leaving again at the same rate. In this steady-state model, the greenhouse gases cause the surface of the planet to be warmer than it would be without them, in order for a balanced amount of heat energy to finally be radiated out into space from the top of the atmosphere.

The Thornthwaite climate classification is a climate classification system created by American climatologist Charles Warren Thornthwaite in 1931 and modified in 1948.

The recharge oscillator model for El Niño–Southern Oscillation (ENSO) is a theory described for the first time in 1997 by Jin., which explains the periodical variation of the sea surface temperature (SST) and thermocline depth that occurs in the central equatorial Pacific Ocean. The physical mechanisms at the basis of this oscillation are periodical recharges and discharges of the zonal mean equatorial heat content, due to ocean-atmosphere interaction. Other theories have been proposed to model ENSO, such as the delayed oscillator, the western Pacific oscillator and the advective reflective oscillator. A unified and consistent model has been proposed by Wang in 2001, in which the recharge oscillator model is included as a particular case.

References

  1. "Kimberly Research and Extension Center" (PDF). extension.uidaho.edu. Archived from the original (PDF) on 4 March 2016. Retrieved 4 May 2018.
  2. "Humid subtropical climate (Cfa) | SKYbrary Aviation Safety". skybrary.aero. Retrieved 2023-10-19.
  3. Thornthwaite, C. W. (1948). "An approach toward a rational classification of climate". Geographical Review. 38 (1): 55–94. doi:10.2307/210739. JSTOR   210739.
  4. Black, Peter E. (2007). "Revisiting the Thornthwaite and Mather water balance". Journal of the American Water Resources Association. 43 (6): 1604–1605. Bibcode:2007JAWRA..43.1604B. doi:10.1111/j.1752-1688.2007.00132.x.
  5. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. (1998). Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements. FAO Irrigation and drainage paper 56. Rome, Italy: Food and Agriculture Organization of the United Nations. ISBN   92-5-104219-5 . Retrieved 2007-10-08.
  6. M. E. Jensen, R. D. Burman & R. G. Allen, ed. (1990). Evapotranspiration and Irrigation Water Requirement. ASCE Manuals and Reports on Engineering Practices. Vol. 70. New York, NY: American Society of Civil Engineers. ISBN   978-0-87262-763-5.
  7. Culf, A. (1994). "Equilibrium evaporation beneath a growing convective boundary layer". Boundary-Layer Meteorology. 70 (1–2): 34–49. Bibcode:1994BoLMe..70...37C. doi:10.1007/BF00712522.
  8. van Heerwaarden, C. C.; et al. (2009). "Interactions between dry-air entrainment, surface evaporation and convective boundary layer development". Quarterly Journal of the Royal Meteorological Society. 135 (642): 1277–1291. Bibcode:2009QJRMS.135.1277V. doi:10.1002/qj.431.