Preference test

Last updated
A radial arm maze allowing animals to choose between 8 variants (e.g. food) that would be placed at the end of each arm Simple Radial Maze.JPG
A radial arm maze allowing animals to choose between 8 variants (e.g. food) that would be placed at the end of each arm

A preference test is an experiment in which animals are allowed free access to multiple environments which differ in one or more ways. Various aspects of the animal's behaviour can be measured with respect to the alternative environments, such as latency and frequency of entry, duration of time spent, range of activities observed, or relative consumption of a goal object in the environment. These measures can be recorded either by the experimenter or by motion detecting software. [1] Strength of preference can be inferred by the magnitude of the difference in the response, but see "Advantages and disadvantages" below. Statistical testing is used to determine whether observed differences in such measures support the conclusion that preference or aversion has occurred. Prior to testing, the animals are usually given the opportunity to explore the environments to habituate and reduce the effects of novelty.

Contents

Preference tests can be used to test for preferences of only one characteristic of an environment, e.g. cage colour, or multiple characteristics e.g. a choice between hamster wheel, Habitrail tunnels or additional empty space for extended locomotion. [2]

Types of test

Two choices

The simplest of preference tests offers a choice between two alternatives. This can be done by putting different goal boxes at the ends of the arms of a T-shaped maze, or having a chamber divided into differing halves. A famous example of this simple method is an investigation of the preferences of chickens for different types of wire floor in battery cages. Two types of metal mesh flooring were being used in the 1950s; one type was a large, open mesh using thick wire, the other was a smaller mesh size but the wire was considerably thinner. A prestigious committee, the Brambell Committee, conducting an investigation into farm animal welfare [3] concluded the thicker mesh should be used as this was likely to be more comfortable for the chickens. However, preference tests showed that chickens preferred the thinner wire. Photographs taken from under the cages showed that the thinner mesh offered more points of contact for the feet than the thick mesh, thereby spreading the load on the hens' feet and presumably feeling more comfortable to the birds.

Multiple choices

The number of choices that can be offered is theoretically limitless for some preference tests, e.g., light intensity, cage size, food types; however, the number is often limited by experimental practicalities, current practice (e.g., animal caging systems) or costs. Furthermore, animals usually investigate all areas of the apparatus in a behaviour called "information gathering", even those with minor preference, so the more choices that are available may dilute the data on the dominant preference(s).

Choices with a cost

Most preference tests involve no 'cost' for making a choice, so they do not indicate the strength of an animals motivation or need to obtain the outcome of the choice. For example, if a laboratory mouse is offered three sizes of cage space it may prefer one of them, but this choice does not indicate whether the mouse 'needs' that particular space, or whether it has a relatively slight preference for it. To measure an animals motivation toward a choice one may perform a "consumer demand test." In this sort of test, the choice involves some "cost" to the animal, such as physical effort (e.g., lever pressing, weighted door).

Uses

Preference tests have been used widely in the study of animal behaviour and motivation, e.g.:

Animal housing and husbandry

Sensory capacities

Animal welfare

Animal communication

Human pharmacology

Preferences of wild animals

Advantages and disadvantages

Advantages

Disadvantages and limitations

See also

Related Research Articles

The term laterality refers to the preference most humans show for one side of their body over the other. Examples include left-handedness/right-handedness and left/right-footedness; it may also refer to the primary use of the left or right hemisphere in the brain. It may also apply to animals or plants. The majority of tests have been conducted on humans, specifically to determine the effects on language.

<span class="mw-page-title-main">Laboratory mouse</span> Mouse used for scientific research

The laboratory mouse or lab mouse is a small mammal of the order Rodentia which is bred and used for scientific research or feeders for certain pets. Laboratory mice are usually of the species Mus musculus. They are the most commonly used mammalian research model and are used for research in genetics, physiology, psychology, medicine and other scientific disciplines. Mice belong to the Euarchontoglires clade, which includes humans. This close relationship, the associated high homology with humans, their ease of maintenance and handling, and their high reproduction rate, make mice particularly suitable models for human-oriented research. The laboratory mouse genome has been sequenced and many mouse genes have human homologues. Lab mice are sold at pet stores for snake food and can also be kept as pets.

An ethogram is a catalogue or inventory of behaviours or actions exhibited by an animal used in ethology.

<span class="mw-page-title-main">Hamster wheel</span> Toy used by rodents such as hamsters, gerbils or mice to exercise in confined spaces such as a cage

A hamster wheel or running wheel is an exercise device used primarily by hamsters and other rodents, but also by other cursorial animals when given the opportunity. Most of these devices consist of a runged or ridged wheel held on a stand by a single or pair of stub axles. Hamster wheels allow rodents to run even when their space is confined. The earliest dated use of the term "hamster wheel", located by the Oxford English Dictionary, is in a 1949 newspaper advertisement.

<span class="mw-page-title-main">Zoopharmacognosy</span> Self-medication by animals

Zoopharmacognosy is a behaviour in which non-human animals self-medicate by selecting and ingesting or topically applying plants, soils and insects with medicinal properties, to prevent or reduce the harmful effects of pathogens, toxins, and even other animals. The term derives from Greek roots zoo ("animal"), pharmacon, and gnosy ("knowing").

<span class="mw-page-title-main">Emotion in animals</span> Research into similarities between non-human and human emotions

Emotion is defined as any mental experience with high intensity and high hedonic content. The existence and nature of emotions in non-human animals are believed to be correlated with those of humans and to have evolved from the same mechanisms. Charles Darwin was one of the first scientists to write about the subject, and his observational approach has since developed into a more robust, hypothesis-driven, scientific approach. Cognitive bias tests and learned helplessness models have shown feelings of optimism and pessimism in a wide range of species, including rats, dogs, cats, rhesus macaques, sheep, chicks, starlings, pigs, and honeybees. Jaak Panksepp played a large role in the study of animal emotion, basing his research on the neurological aspect. Mentioning seven core emotional feelings reflected through a variety of neuro-dynamic limbic emotional action systems, including seeking, fear, rage, lust, care, panic and play. Through brain stimulation and pharmacological challenges, such emotional responses can be effectively monitored.

<span class="mw-page-title-main">Behavioral enrichment</span>

Behavioral enrichment is an animal husbandry principle that seeks to enhance the quality of captive animal care by identifying and providing the environmental stimuli necessary for optimal psychological and physiological well-being. Enrichment can either be active or passive, depending on whether it requires direct contact between the animal and the enrichment. A variety of enrichment techniques are used to create desired outcomes similar to an animal's individual and species' history. Each of the techniques used is intended to stimulate the animal's senses similarly to how they would be activated in the wild. Provided enrichment may be seen in the form of auditory, olfactory, habitat factors, food, research projects, training, and objects.

<span class="mw-page-title-main">Mate choice</span> One of the primary mechanisms under which evolution can occur

Mate choice is one of the primary mechanisms under which evolution can occur. It is characterized by a "selective response by animals to particular stimuli" which can be observed as behavior. In other words, before an animal engages with a potential mate, they first evaluate various aspects of that mate which are indicative of quality—such as the resources or phenotypes they have—and evaluate whether or not those particular trait(s) are somehow beneficial to them. The evaluation will then incur a response of some sort.

<span class="mw-page-title-main">Elevated plus maze</span> Scientific test for laboratory mice

The elevated plus maze (EPM) is a test measuring anxiety in laboratory animals that usually uses rodents as a screening test for putative anxiolytic or anxiogenic compounds and as a general research tool in neurobiological anxiety research such as PTSD and TBI. The model is based on the test animal's aversion to open spaces and tendency to be thigmotaxic. In the EPM, this anxiety is expressed by the animal spending more time in the enclosed arms. The validity of the model has been criticized as non-classical clinical anxiolytics produce mixed results in the EPM test. Despite this, the model is still commonly used for screening putative anxiolytics and for general research into the brain mechanisms of anxiety.

<span class="mw-page-title-main">Conditioned place preference</span> Pavlovian conditioning

Conditioned place preference (CPP) is a form of Pavlovian conditioning used to measure the motivational effects of objects or experiences. This motivation comes from the pleasurable aspect of the experience, so that the brain can be reminded of the context that surrounded the "encounter". By measuring the amount of time an animal spends in an area that has been associated with a stimulus, researchers can infer the animal's liking for the stimulus. This paradigm can also be used to measure conditioned place aversion with an identical procedure involving aversive stimuli instead. Both procedures usually involve mice or rats as subjects. This procedure can be used to measure extinction and reinstatement of the conditioned stimulus. Certain drugs are used in this paradigm to measure their reinforcing properties. Two different methods are used to choose the compartments to be conditioned, and these are biased vs. unbiased. The biased method allows the animal to explore the apparatus, and the compartment they least prefer is the one that the drug is administered in and the one they most prefer is the one where the vehicle is injected. This method allows the animal to choose the compartment they get the drug and vehicle. In comparison, the unbiased method does not allow the animal to choose what compartment they get the drug and vehicle in. Instead, the researcher chooses the compartments.

<span class="mw-page-title-main">Dust bathing</span> Animal behavior

Dust bathing is an animal behavior characterized by rolling or moving around in dust, dry earth or sand, with the likely purpose of removing parasites from fur, feathers or skin. Dust bathing is a maintenance behavior performed by a wide range of mammalian and avian species. For some animals, dust baths are necessary to maintain healthy feathers, skin, or fur, similar to bathing in water or wallowing in mud. In some mammals, dust bathing may be a way of transmitting chemical signals to the ground which marks an individual's territory.

<span class="mw-page-title-main">Pain in animals</span> Overview about pain in animals

Pain negatively affects the health and welfare of animals. "Pain" is defined by the International Association for the Study of Pain as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage." Only the animal experiencing the pain can know the pain's quality and intensity, and the degree of suffering. It is harder, if even possible, for an observer to know whether an emotional experience has occurred, especially if the sufferer cannot communicate. Therefore, this concept is often excluded in definitions of pain in animals, such as that provided by Zimmerman: "an aversive sensory experience caused by actual or potential injury that elicits protective motor and vegetative reactions, results in learned avoidance and may modify species-specific behaviour, including social behaviour." Nonhuman animals cannot report their feelings to language-using humans in the same manner as human communication, but observation of their behaviour provides a reasonable indication as to the extent of their pain. Just as with doctors and medics who sometimes share no common language with their patients, the indicators of pain can still be understood.

Animal models of depression are research tools used to investigate depression and action of antidepressants as a simulation to investigate the symptomatology and pathophysiology of depressive illness or used to screen novel antidepressants.

<span class="mw-page-title-main">Stereotypy (non-human)</span> Non-pathological pattern of animal behavior which displays very low variability

In animal behaviour, stereotypy, stereotypic or stereotyped behaviour has several meanings, leading to ambiguity in the scientific literature. A stereotypy is a term for a group of phenotypic behaviours that are repetitive, morphologically identical and which possess no obvious goal or function. These behaviours have been defined as 'abnormal', as they exhibit themselves solely in animals subjected to barren environments, scheduled or restricted feedings, social deprivation and other cases of frustration, but do not arise in 'normal' animals in their natural environments. These behaviours may be maladaptive, involving self-injury or reduced reproductive success, and in laboratory animals can confound behavioural research. Stereotypical behaviours are thought to be caused ultimately by artificial environments that do not allow animals to satisfy their normal behavioural needs. Rather than refer to the behaviour as abnormal, it has been suggested that it be described as "behaviour indicative of an abnormal environment".

Spontaneous Alternation Behavior (SAB) describes the tendency to alternate in the pursuit of different stimuli in consecutive trials, despite a lack of training or reinforcement. The behavior emerged from experiments using animals, mainly rodents, who naturally demonstrated the behavioral pattern when placed in previously unexplored maze shapes.

Animal welfare science is the scientific study of the welfare of animals as pets, in zoos, laboratories, on farms and in the wild. Although animal welfare has been of great concern for many thousands of years in religion and culture, the investigation of animal welfare using rigorous scientific methods is a relatively recent development. The world's first Professor of Animal Welfare Science, Donald Broom, was appointed by Cambridge University (UK) in 1986.

<span class="mw-page-title-main">T-maze</span> Forked passage used in animal cognition tests

In behavioral science, a T-maze is a simple forked passage used in animal cognition experiments. It is shaped like the letter T, providing the subject, typically a rodent, with a straightforward choice. T-mazes are used to study how the rodents function with memory and spatial learning through applying various stimuli. Starting in the early 20th century, rodents were used in experiments such as the T-maze. These concepts of T-mazes are used to assess rodent behavior. The different tasks, such as left-right discrimination and forced alternation, are mainly used with rodents to test reference and working memory.

<span class="mw-page-title-main">Consumer demand tests (animals)</span>

Consumer demand tests for animals are studies designed to measure the relative strength of an animal's motivation to obtain resources such as different food items. Such demand tests quantify the strength of motivation animals have for resources whilst avoiding anthropomorphism and anthropocentrism.

<span class="mw-page-title-main">Marble burying</span> Animal model used in scientific research

Marble burying is an animal model used in scientific research to depict anxiety or obsessive–compulsive disorder (OCD) behavior. It is based on the observation that rats and mice will bury either harmful or harmless objects in their bedding. While widely used there is significant controversy over the interpretation of its results.

<span class="mw-page-title-main">Chris Sherwin</span> English veterinary scientist (1962–2017)

Christopher M. Sherwin was an English veterinary scientist and senior research fellow at the University of Bristol Veterinary School in Lower Langford, Somerset. He specialised in applied ethology, the study of the behaviour of animals in the context of their interactions with humans, and of how to balance the animals' needs with the demands placed on them by humans.

References

  1. Cunningham, C.; Gremel, C.; Groblewski, P. (2006). "Drug-induced conditioned place preference and aversion in mice". Nature Protocols. 1 (4): 1662–1670. doi:10.1038/nprot.2006.279. PMID   17487149. S2CID   2144049.
  2. Sherwin, C.M. (1998). "The use and perceived importance of three resources which provide caged laboratory mice the opportunity of extended locomotion". Applied Animal Behaviour Science. 55 (3–4): 353–367. doi:10.1016/s0168-1591(97)00049-x.
  3. Thorpe, W.H., (1965). The assessment of pain and distress in animals. Appendix III in report of the technical committee to enquire into the welfare of animals kept under intensive husbandry conditions, F.W.R.Brambell (chairman). H.M.S.O., London
  4. Sherwin, C.M.; Glen, E.F. (2003). "Cage colour preferences and effects of home-cage colour on anxiety in laboratory mice". Animal Behaviour. 66 (6): 1085–1092. doi:10.1006/anbe.2003.2286. S2CID   53191108.
  5. Sherwin, C.M.; Olsson, I.A.S. (2004). "Housing conditions affect self-administration of anxiolytic by laboratory mice". Animal Welfare. 13: 33–38. doi:10.1017/S0962728600026634. S2CID   56915273.
  6. Moinard, C.; Sherwin, C.M. (1999). "Turkeys prefer fluorescent light with supplementary ultraviolet radiation". Applied Animal Behaviour Science. 64 (4): 261–267. doi:10.1016/s0168-1591(99)00043-x.
  7. Harding, E.J.; Paul, E.S; Mendl, M. (2004). "Animal Behaviour: Cognitive bias and affective state". Nature. 427 (6972): 312. Bibcode:2004Natur.427..312H. doi: 10.1038/427312a . PMID   14737158. S2CID   4411418.
  8. Sherwin, C.M.; Heyes, C.M.; Nicol (2002). "Social learning influences the preferences of domestic hens for novel food". Animal Behaviour. 63 (5): 933–942. doi:10.1006/anbe.2002.2000. S2CID   53196986.
  9. Levin, ED (1988). "Psychopharmacological effects in the radial-arm maze". Neuroscience and Biobehavioral Reviews . 12 (2): 169–75. doi:10.1016/S0149-7634(88)80008-3. PMID   2902540. S2CID   31161513.
  10. Olah G, Rózsa L (2006). "Nitrogen metabolic wastes do not influence drinking water preference in feral pigeons" (PDF). Acta Zoologica Academiae Scientiarum Hungaricae . 52 (4): 401–406.
  11. Dawkins, M.S. (1983). "Battery hens name their price: consumer demand theory and the measurement of ethological 'needs'". Animal Behaviour. 31 (4): 1195–1205. doi:10.1016/s0003-3472(83)80026-8. S2CID   53137284.
  12. Mason, G.; Cooper, J.; Clarebrough, C. (2001). "The welfare of fur-farmed mink" (PDF). Nature. 410 (6824): 35–36. doi:10.1038/35065157. PMID   11242031. S2CID   39542739.
  13. Tordoff, M.G.; Alarcon, L.K.; Lawler, M.P. (2008). "Preferences of 14 rat strains for 17 taste compounds". Physiology and Behavior. 95 (3): 308–332. doi:10.1016/j.physbeh.2008.06.010. PMC   2642481 . PMID   18639567.