Author | John Derbyshire |
---|---|
Country | United States |
Language | English |
Subject | Mathematics, History of science |
Genre | Popular science |
Publisher | Joseph Henry Press |
Publication date | 2003 |
Pages | 442 |
ISBN | 0-309-08549-7 |
Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics (2003) is a historical book on mathematics by John Derbyshire, detailing the history of the Riemann hypothesis, named for Bernhard Riemann, and some of its applications.
The book was awarded the Mathematical Association of America's inaugural Euler Book Prize in 2007. [1]
The book is written such that even-numbered chapters present historical elements related to the development of the conjecture, and odd-numbered chapters deal with the mathematical and technical aspects. [2] Despite the title, the book provides biographical information on many iconic mathematicians including Euler, Gauss, and Lagrange. [3]
In chapter 1, "Card Trick", Derbyshire introduces the idea of an infinite series and the ideas of convergence and divergence of these series. He imagines that there is a deck of cards stacked neatly together, and that one pulls off the top card so that it overhangs from the deck. Explaining that it can overhang only as far as the center of gravity allows, the card is pulled so that exactly half of it is overhanging. Then, without moving the top card, he slides the second card so that it is overhanging too at equilibrium. As he does this more and more, the fractional amount of overhanging cards as they accumulate becomes less and less. He explores various types of series such as the harmonic series.
In chapter 2, Bernhard Riemann is introduced and a brief historical account of Eastern Europe in the 18th Century is discussed.
In chapter 3, the Prime Number Theorem (PNT) is introduced. The function which mathematicians use to describe the number of primes in N numbers, π(N), is shown to behave in a logarithmic manner, as so:
where log is the natural logarithm.
In chapter 4, Derbyshire gives a short biographical history of Carl Friedrich Gauss and Leonard Euler, setting up their involvement in the Prime Number Theorem.
In chapter 5, the Riemann Zeta Function is introduced:
In chapter 7, the sieve of Eratosthenes is shown to be able to be simulated using the Zeta function. With this, the following statement which becomes the pillar stone of the book is asserted:
Following the derivation of this finding, the book delves into how this is manipulated to expose the PNT's nature.
According to reviewer S. W. Graham, the book is written at a level that is suitable for advanced undergraduate students of mathematics. [3] In contrast, James V. Rauff recommends it to "anyone interested in the history and mathematics of the Riemann hypothesis". [4]
Reviewer Don Redmond writes that, while the even-numbered chapters explain the history well, the odd-numbered chapters present the mathematics too informally to be useful, failing to provide insight to readers who do not already understand the mathematics, and failing even to explain the importance of the Riemann hypothesis. [2] Graham adds that the level of mathematics is inconsistent, with detailed explanations of basics and sketchier explanations of material that is more advanced. But for those who do already understand the mathematics, he calls the book "a familiar story entertainingly told". [3]
In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,
The Möbius function μ(n) is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted μ(x).
In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as
In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.
The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case.
In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:
In mathematics, the Weil conjectures were highly influential proposals by André Weil (1949). They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers and additive number theory.
In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The original such product was given for the sum of all positive integers raised to a certain power as proven by Leonhard Euler. This series and its continuation to the entire complex plane would later become known as the Riemann zeta function.
In mathematics, a Dirichlet L-series is a function of the form
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.
In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK(s) = 0 and 0 < Re(s) < 1, then Re(s) = 1/2.
In mathematics, the Gauss–Kuzmin–Wirsing operator is the transfer operator of the Gauss map that takes a positive number to the fractional part of its reciprocal. It is named after Carl Gauss, Rodion Kuzmin, and Eduard Wirsing. It occurs in the study of continued fractions; it is also related to the Riemann zeta function.
In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.
In mathematics, the Selberg class is an axiomatic definition of a class of L-functions. The members of the class are Dirichlet series which obey four axioms that seem to capture the essential properties satisfied by most functions that are commonly called L-functions or zeta functions. Although the exact nature of the class is conjectural, the hope is that the definition of the class will lead to a classification of its contents and an elucidation of its properties, including insight into their relationship to automorphic forms and the Riemann hypothesis. The class was defined by Atle Selberg in, who preferred not to use the word "axiom" that later authors have employed.
In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.
In mathematics, Apéry's constant is the sum of the reciprocals of the positive cubes. That is, it is defined as the number
Leonhard Euler proved the Euler product formula for the Riemann zeta function in his thesis Variae observationes circa series infinitas, published by St Petersburg Academy in 1737.
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann (1859), after whom it is named.