Proteus hauseri

Last updated

Proteus hauseri
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Enterobacterales
Family: Enterobacteriaceae
Genus: Proteus
Species:
P. hauseri
Binomial name
Proteus hauseri
O'Hara et al., 2000

Proteus hauseri is a Gram-negative, facultatively anaerobic, rod-shaped bacterium.

Contents

Identification

Similar to other members of the Enterobacterales order, Proteus hauseri is oxidase negative, catalase positive, glucose fermenting, and nitrate reducing. [1] P. hauseri is ONPG negative and PDA positive [ citation needed ]. Unlike the more commonly seen species of Proteus, P. hauseri is also able to convert tryptophan into indole, resulting in a positive indole test. P. hauseri shares a similar biochemical profile with Proteus vulgaris but can be differentiated by its ability to produce acid from trehalose. Most strains of P. hauseri demonstrate swarming motility, often covering the entire plate on which it is are inoculated onto.

History

Strains of Proteus vulgaris were historically divided into three biogroups: Biogroup 1 was characterized as negative for indole, salicin fermentation, and aesculin hydrolysis. Biogroup 2 was characterized as positive for indole, salicin, and aesculin. Biogroup 3 was characterized by positive indole production but negative for salicin and aesculin. [2] Taxonomic studies performed on P. vulgaris biogroup 3 in 1976 suggested that this strain was atypical from the two other P. vulgaris subclusters. [3] DNA hybridization performed on P. vulgaris biogroup 3 isolates found four distinct genomospecies, designate genomospecies 3, 4, 5, and 6. These genomospecies are difficult to differentiate phenotypically; however, P. vulgaris genomospecies 3 is unique in that it is negative for Jordan's tartrate and it was thus designated as Proteus hauseri.

Related Research Articles

<i>Proteus vulgaris</i> Species of bacterium

Proteus vulgaris is a rod-shaped, nitrate-reducing, indole-positive and catalase-positive, hydrogen sulfide-producing, Gram-negative bacterium that inhabits the intestinal tracts of humans and animals. It can be found in soil, water, and fecal matter. It is grouped with the Morganellaceae and is an opportunistic pathogen of humans. It is known to cause wound infections and other species of its genera are known to cause urinary tract infections.

<i>Proteus</i> (bacterium) Genus of bacteria

Proteus is a genus of Gram-negative bacteria. It is a rod shaped, aerobic and motile bacteria, which is able to migrate across surfaces due its “swarming” characteristic in temperatures between 20 and 37 °C. Their size generally ranges from 0.4–0.8 μm in diameter and 1.0–3.0 μm in length. They tend to have an ammonia smell. Proteus bacilli are widely distributed in nature as saprophytes, being found in decomposing animal matter, sewage, manure soil, the mammalian intestine, and human and animal feces. They are opportunistic pathogens, commonly responsible for urinary and septic infections, often nosocomial.

Plesiomonas shigelloides is a species of bacteria and the only member of its genus. It is a Gram-negative, rod-shaped bacterium which has been isolated from freshwater, freshwater fish, shellfish, cattle, goats, swine, cats, dogs, monkeys, vultures, snakes, toads and humans. It is considered a fecal coliform. P. shigelloides is a global distributed species, found globally outside of the polar ice caps.

<i>Proteus mirabilis</i> Species of bacterium

Proteus mirabilis is a Gram-negative, facultatively anaerobic, rod-shaped bacterium. It shows swarming motility and urease activity. P. mirabilis causes 90% of all Proteus infections in humans. It is widely distributed in soil and water. Proteus mirabilis can migrate across the surface of solid media or devices using a type of cooperative group motility called swarming. Proteus mirabilis is most frequently associated with infections of the urinary tract, especially in complicated or catheter-associated urinary tract infections.

<span class="mw-page-title-main">Coliform bacteria</span> Group of bacterial species

Coliform bacteria are defined as either motile or non-motile Gram-negative non-spore forming bacilli that possess β-galactosidase to produce acids and gases under their optimal growth temperature of 35–37 °C. They can be aerobes or facultative aerobes, and are a commonly used indicator of low sanitary quality of foods, milk, and water. Coliforms can be found in the aquatic environment, in soil and on vegetation; they are universally present in large numbers in the feces of warm-blooded animals as they are known to inhabit the gastrointestinal system. While coliform bacteria are not normally causes of serious illness, they are easy to culture, and their presence is used to infer that other pathogenic organisms of fecal origin may be present in a sample, or that said sample is not safe to consume. Such pathogens include disease-causing bacteria, viruses, or protozoa and many multicellular parasites. Every drinking water source must be tested for the presence of these total coliform bacteria.

The indole test is a biochemical test performed on bacterial species to determine the ability of the organism to convert tryptophan into indole. This division is performed by a chain of a number of different intracellular enzymes, a system generally referred to as "tryptophanase."

Klebsiella aerogenes, previously known as Enterobacter aerogenes, is a Gram-negative, oxidase-negative, catalase-positive, citrate-positive, indole-negative, rod-shaped bacterium. Capable of motility via peritrichous flagella, the bacterium is approximately 1–3 microns in length.

<i>Cronobacter sakazakii</i> Species of bacterium

Cronobacter sakazakii, which before 2007 was named Enterobacter sakazakii, is an opportunistic Gram-negative, rod-shaped, pathogenic bacterium that can live in very dry places, otherwise known as xerotolerance. C. sakazakii utilizes a number of genes to survive desiccation and this xerotolerance may be strain specific. The majority of C. sakazakii cases are adults but low-birth-weight preterm neonatal and older infants are at the highest risk. The pathogen is a rare cause of invasive infection in infants, with historically high case fatality rates (40–80%).

<i>Cronobacter</i> Genus of bacteria

Cronobacter is a genus of Gram-negative, facultatively anaerobic, oxidase-negative, catalase-positive, rod-shaped bacteria of the family Enterobacteriaceae. Several Cronobacter species are desiccation resistant and persistent in dry products such as powdered infant formula. They are generally motile, reduce nitrate, use citrate, hydrolyze esculin and arginine, and are positive for L-ornithine decarboxylation. Acid is produced from D-glucose, D-sucrose, D-raffinose, D-melibiose, D-cellobiose, D-mannitol, D-mannose, L-rhamnose, L-arabinose, D-trehalose, galacturonate and D-maltose. Cronobacter spp. are also generally positive for acetoin production and negative for the methyl red test, indicating 2,3-butanediol rather than mixed acid fermentation. The type species of the genus Cronobacter is Cronobacter sakazakii comb. nov.

<i>Morganella morganii</i> Species of bacterium

Morganella morganii is a species of Gram-negative bacteria. It has a commensal relationship within the intestinal tracts of humans, mammals, and reptiles as normal flora. Although M. morganii has a wide distribution, it is considered an uncommon cause of community-acquired infection, and it is most often encountered in postoperative and other nosocomial infections, such as urinary tract infections.

Staphylococcus nepalensis is a Gram-positive coccoid bacterium belonging to the genus Staphylococcus.

<i>Proteus penneri</i> Species of bacterium

Proteus penneri is a Gram-negative, facultatively anaerobic, rod-shaped bacterium. It is an invasive pathogen and a cause of nosocomial infections of the urinary tract or open wounds. Pathogens have been isolated mainly from the urine of patients with abnormalities in the urinary tract, and from stool. P. penneri strains are naturally resistant to numerous antibiotics, including penicillin G, amoxicillin, cephalosporins, oxacillin, and most macrolides, but are naturally sensitive to aminoglycosides, carbapenems, aztreonam, quinolones, sulphamethoxazole, and co-trimoxazole. Isolates of P. penneri have been found to be multiple drug-resistant (MDR) with resistance to six to eight drugs. β-lactamase production has also been identified in some isolates.

Cronobacter turicensis is a bacterium. It is usually food-borne and pathogenic. It is named after Turicum, the Latin name of Zurich, as the type strain originates from there. Its type strain is strain 3032. This strain was first isolated from a fatal case of neonatal meningitis. C. Turicensis strains are indole negative but malonate, dulcitol and methyl-α-D-glucopyranoside positive.

Cronobacter muytjensii is a bacterium. It is named after Harry Muytjens. Its type strain is ATCC 51329T. It is indole, dulcitol, and malonate positive but palatinose and methyl-α-D-glucopyranoside negative.

Citrobacter youngae is a Gram-negative species of bacteria.

Citrobacter braakii is a Gram-negative species of bacteria. It has been reported to cause sepsis in an immunocompromised person.

Citrobacter werkmanii is a Gram-negative species of bacteria.

Citrobacter sedlakii is a species of Gram-negative bacteria. It has been described as causing human disease, but is generally found as a non-pathogenic organism in human stools.

Citrobacter gillenii is a species of Gram-negative bacteria.

Citrobacter murliniae is a species of bacteria.

References

  1. Versalovic, James, ed. (2011). Manual of clinical microbiology (10th ed.). Washington, DC: ASM Press. ISBN   978-1-55581-463-2.
  2. O'Hara, C. M.; Brenner, F. W.; Steigerwalt, A. G.; Hill, B. C.; Holmes, B.; Grimont, P. A.; Hawkey, P. M.; Penner, J. L.; Miller, J. M.; Brenner, D. J. (September 2000). "Classification of Proteus vulgaris biogroup 3 with recognition of Proteus hauseri sp. nov., nom. rev. and unnamed Proteus genomospecies 4, 5 and 6". International Journal of Systematic and Evolutionary Microbiology. 50 Pt 5 (5): 1869–1875. doi: 10.1099/00207713-50-5-1869 . ISSN   1466-5026. PMID   11034498.
  3. McKell, J.; Jones, D. (August 1976). "A numerical taxonomic study of Proteus-Providence bacteria". The Journal of Applied Bacteriology. 41 (1): 143–161. doi:10.1111/j.1365-2672.1976.tb00614.x. ISSN   0021-8847. PMID   956066.