Pseudoelementary class

Last updated

In logic, a pseudoelementary class is a class of structures derived from an elementary class (one definable in first-order logic) by omitting some of its sorts and relations. It is the mathematical logic counterpart of the notion in category theory of (the codomain of) a forgetful functor, and in physics of (hypothesized) hidden variable theories purporting to explain quantum mechanics. Elementary classes are (vacuously) pseudoelementary but the converse is not always true; nevertheless pseudoelementary classes share some of the properties of elementary classes such as being closed under ultraproducts.

Contents

Definition

A pseudoelementary class is a reduct of an elementary class. That is, it is obtained by omitting some of the sorts and relations of a (many-sorted) elementary class.

Examples

  1. The theory with equality of sets under union and intersection, whose structures are of the form (W, ∪, ∩), can be understood naively as the pseudoelementary class formed from the two-sorted elementary class of structures of the form (A, W, ∪, ∩, ∈) where ∈ ⊆ A×W and ∪ and ∩ are binary operations (qua ternary relations) on W. The theory of the latter class is axiomatized by
    X,YW.∀aA.[ aXY  aXaY]
    X,YW.∀aA.[ aXY  aXaY]
    X,YW.[ (∀aA.[aX  aY]) → X = Y]

    In the intended interpretation A is a set of atoms a,b,..., W is a set of sets of atoms X,Y,... and ∈ is the membership relation between atoms and sets. The consequences of these axioms include all the laws of distributive lattices. Since the latter laws make no mention of atoms they remain meaningful for the structures obtained from the models of the above theory by omitting the sort A of atoms and the membership relation ∈. All distributive lattices are representable as sets of sets under union and intersection, whence this pseudoelementary class is in fact an elementary class, namely the variety of distributive lattices.

    In this example both classes (respectively before and after the omission) are finitely axiomatizable elementary classes. But whereas the standard approach to axiomatizing the latter class uses nine equations to axiomatize a distributive lattice, the former class only requires the three axioms above, making it faster to define the latter class as a reduct of the former than directly in the usual way.
  2. The theory with equality of binary relations under union RS, intersection RS, complement R, relational composition R;S, and relational converse R, whose structures are of the form (W, ∪, ∩, , ;, ), can be understood as the pseudoelementary class formed from the three-sorted elementary class of structures of the form (A, P, W, ∪, ∩, , ;, , λ, ρ, π, ∈). The intended interpretation of the three sorts are atoms, pairs of atoms, and sets of pairs of atoms, π: A×;AP and λ,ρ: PA are the evident pairing constructors and destructors, and ∈ ⊆ P×;W is the membership relation between pairs and relations (as sets of pairs). By analogy with Example 1, the purely relational connectives defined on W can be axiomatized naively in terms of atoms and pairs of atoms in the customary manner of introductory texts. The pure theory of binary relations can then be obtained as the theory of the pseudoelementary class of reducts of models of this elementary class obtained by omitting the atom and pair sorts and all relations involving the omitted sorts. In this example both classes are elementary, but only the former class is finitely axiomatizable, though the latter class (the reduct) was shown by Tarski in 1955 to be nevertheless a variety, namely RRA, the representable relation algebras.
  3. A primitive ring is a generalization of the notion of simple ring. It is definable in elementary (first-order) language in terms of the elements and ideals of a ring, giving rise to an elementary class of two-sorted structures comprising rings and ideals. The class of primitive rings is obtained from this elementary class by omitting the sorts and language associated with the ideals, and is hence a pseudoelementary class. In this example it is an open question whether this pseudoelementary class is elementary.
  4. The class of exponentially closed fields is a pseudoelementary class that is not elementary.

Applications

A quasivariety defined logically as the class of models of a universal Horn theory can equivalently be defined algebraically as a class of structures closed under isomorphisms, subalgebras, and reduced products. Since the notion of reduced product is more intricate than that of direct product, it is sometimes useful to blend the logical and algebraic characterizations in terms of pseudoelementary classes. One such blended definition characterizes a quasivariety as a pseudoelementary class closed under isomorphisms, subalgebras, and direct products (the pseudoelementary property allows "reduced" to be simplified to "direct").

A corollary of this characterization is that one can (nonconstructively) prove the existence of a universal Horn axiomatization of a class by first axiomatizing some expansion of the structure with auxiliary sorts and relations and then showing that the pseudoelementary class obtained by dropping the auxiliary constructs is closed under subalgebras and direct products. This technique works for Example 2 because subalgebras and direct products of algebras of binary relations are themselves algebras of binary relations, showing that the class RRA of representable relation algebras is a quasivariety (and a fortiori an elementary class). This short proof is an effective application of abstract nonsense; the stronger result by Tarski that RRA is in fact a variety required more honest toil.

Related Research Articles

<span class="mw-page-title-main">Boolean algebra (structure)</span> Algebraic structure modeling logical operations

In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra.

<span class="mw-page-title-main">Power set</span> Mathematical set containing all subsets of a given set

In mathematics, the power set (or powerset) of a set S is the set of all subsets of S, including the empty set and S itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of S is variously denoted as P(S), 𝒫(S), P(S), , , or 2S. The notation 2S, meaning the set of all functions from S to a given set of two elements (e.g., {0, 1}), is used because the powerset of S can be identified with, equivalent to, or bijective to the set of all the functions from S to the given two elements set.

Universal algebra is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study.

In abstract algebra, a congruence relation is an equivalence relation on an algebraic structure that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes for the relation.

In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A, and a finite set of identities, known as axioms, that these operations must satisfy.

In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ab of implication such that (ca) ≤ b is equivalent to c ≤ (ab). From a logical standpoint, AB is by this definition the weakest proposition for which modus ponens, the inference rule AB, AB, is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by Arend Heyting (1930) to formalize intuitionistic logic.

In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras. Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense described below. Its equivalence classes partition the elements of the given algebraic structure. The quotient algebra has these classes as its elements, and the compatibility conditions are used to give the classes an algebraic structure.

Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary.

This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles:

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum and a unique infimum. An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.

In abstract algebra, a residuated lattice is an algebraic structure that is simultaneously a lattice xy and a monoid xy which admits operations x\z and z/y, loosely analogous to division or implication, when xy is viewed as multiplication or conjunction, respectively. Called respectively right and left residuals, these operations coincide when the monoid is commutative. The general concept was introduced by Morgan Ward and Robert P. Dilworth in 1939. Examples, some of which existed prior to the general concept, include Boolean algebras, Heyting algebras, residuated Boolean algebras, relation algebras, and MV-algebras. Residuated semilattices omit the meet operation ∧, for example Kleene algebras and action algebras.

In mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation. The motivating example of a relation algebra is the algebra 2X² of all binary relations on a set X, that is, subsets of the cartesian square X2, with RS interpreted as the usual composition of binary relations R and S, and with the converse of R as the converse relation.

Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the equational theory of the two values 0 and 1. Common to Boolean algebras, groups, and vector spaces is the notion of an algebraic structure, a set closed under some operations satisfying certain equations.

In abstract algebra, a skew lattice is an algebraic structure that is a non-commutative generalization of a lattice. While the term skew lattice can be used to refer to any non-commutative generalization of a lattice, since 1989 it has been used primarily as follows.

In algebraic logic, an action algebra is an algebraic structure which is both a residuated semilattice and a Kleene algebra. It adds the star or reflexive transitive closure operation of the latter to the former, while adding the left and right residuation or implication operations of the former to the latter. Unlike dynamic logic and other modal logics of programs, for which programs and propositions form two distinct sorts, action algebra combines the two into a single sort. It can be thought of as a variant of intuitionistic logic with star and with a noncommutative conjunction whose identity need not be the top element. Unlike Kleene algebras, action algebras form a variety, which furthermore is finitely axiomatizable, the crucial axiom being a•(aa)* ≤ a. Unlike models of the equational theory of Kleene algebras (the regular expression equations), the star operation of action algebras is reflexive transitive closure in every model of the equations. Action algebras were introduced by Vaughan Pratt in the European Workshop JELIA'90.

In universal algebra and in model theory, a reduct of an algebraic structure is obtained by omitting some of the operations and relations of that structure. The opposite of "reduct" is "expansion."

In the mathematical field of category theory, an allegory is a category that has some of the structure of the category Rel of sets and binary relations between them. Allegories can be used as an abstraction of categories of relations, and in this sense the theory of allegories is a generalization of relation algebra to relations between different sorts. Allegories are also useful in defining and investigating certain constructions in category theory, such as exact completions.

In universal algebra and lattice theory, a tolerance relation on an algebraic structure is a reflexive symmetric relation that is compatible with all operations of the structure. Thus a tolerance is like a congruence, except that the assumption of transitivity is dropped. On a set, an algebraic structure with empty family of operations, tolerance relations are simply reflexive symmetric relations. A set that possesses a tolerance relation can be described as a tolerance space. Tolerance relations provide a convenient general tool for studying indiscernibility/indistinguishability phenomena. The importance of those for mathematics had been first recognized by Poincaré.

References