Pseudoword

Last updated

A pseudoword is a unit of speech or text that appears to be an actual word in a certain language, while in fact it has no meaning. It is a specific type of nonce word, or even more narrowly a nonsense word, composed of a combination of phonemes which nevertheless conform to the language's phonotactic rules. [1] It is thus a kind of vocable: utterable but meaningless.

Contents

Such words lacking a meaning in a certain language or absent in any text corpus or dictionary can be the result of (the interpretation of) a truly random signal, but there will often be an underlying deterministic source, as is the case for examples like jabberwocky and galumph (both coined in a nonsense poem by Lewis Carroll), dord (a ghost word published due to a mistake), ciphers, and typos.

A string of nonsensical words may be described as gibberish. Word salad, in contrast, may contain legible and intelligible words but without semantic or syntactic correlation or coherence.

Characteristics

Within linguistics, a pseudoword is defined specifically as respecting the phonotactic restrictions of a language. [2] That is, it does not include sounds or series of sounds that do not exist in that language: it is easily pronounceable for speakers of the language. When reading pseudowords, some cite the need to reflect on the real words that are "friendly" and "unfriendly". [3] For instance, "tave" can be read easily due to the number of its friendly words such as cave, pave, and wave. Also, when written down, a pseudoword does not include strings of characters that are not permissible in the spelling of the target language. "Vonk" is a pseudoword in English, while "dfhnxd" is not. The latter is an example of a nonword. Nonwords are contrasted with pseudowords in that they are not pronounceable and by that their spelling could not be the spelling of a real word.

Pseudowords are created in one of two ways. The first method involves changing at least one letter in a word. The second method uses various bigrams and trigrams and combines them. Both methods evaluate certain criteria to compare the pseudoword to another real word. The more that a given pseudoword matches a word in terms of criteria, the stronger the word is. [4]

Pseudowords are also sometimes called wug words in the context of psycholinguistic experiments. This is because wug [wʌg] was one such pseudoword used by Jean Berko Gleason in her wug test 1958 experiments. [5] Words like wug, which could have been a perfectly acceptable word in English but is not due to an accidental gap, were presented to children. The experimenter would then prompt the children to create a plural for wug, which was almost invariably wugs [wʌgz]. The experiments were designed to see if English morphophonemics would be applied by children to novel words. They revealed that even at a very young age, children have already internalized many of the complex features of their language.

A logatome is a short pseudoword or just a syllable which is used in acoustic experiments to examine speech recognition.

Linguistic studies

Experiments involving pseudonyms have led to the discovery of the pseudoword effect, a phenomenon where non-words that are similar orthographically to real words give rise to more confusion, or "hits and false alarms," than other real words which are also similar in orthography. The reasoning behind this is focused on semantic meaning. Semantics help us more quickly differentiate between words that look similar, leading to the conclusion that the pseudoword effect is caused by a familiarity-based process. [6]

Pseudowords are also often used in studies involving aphasia and other cognitive deficits. Particularly Broca’s aphasia has been associated with difficulties in processing pseudowords. In aphasia studies, they are often used to measure syllable frequency by having patients attempt to pronounce them. [7] Also, patients with left hemisphere damage (LHD) tend to have significantly greater difficulty writing pseudowords than those with right hemisphere damage. [8] This specific deficit is known as the lexicality effect. It occurs in the presence of perisylvian, rather than extrasylvian, damage in the left hemisphere. [9]

Pseudowords and reading ability

In testing the ability of beginner readers, pseudowords are used due to their characteristics as pronounceable non-words. [10] Those with reading disabilities have a more difficult time pronouncing pseudowords. Because pseudowords are made using common syllables, it might be obvious that trouble in pronouncing them would be connected to trouble pronouncing real words. From these findings, nonsense word fluency is now considered to be a basic early literacy indicator.

A standardized test for beginning readers, Dynamic Indicators of Basic Early Literacy Skills (DIBELS), shows high scores in pseudoword pronunciation being correlated with high scores in the reading of authentic words. [11] Due to these findings, often pseudowords are used to train early readers to strengthen their morphological knowledge.

There is evidence that suggests that higher scores on these tests, such as the Word-Pseudoword Reading Competence Test are highly correlated with other more general standardized tests, such as the Test for School Achievement and its subtests. Pseudoword pronunciation and spelling are associated with general reading comprehension and, more importantly, general, education-based achievement. [12]

Nonsense syllables

A logatome or nonsense syllable is a short pseudoword consisting most of the time of just one syllable which has no meaning of its own. Examples of English logatomes are the nonsense words snarp or bluck.

Like other pseudowords, logatomes obey all the phonotactic rules of a specific language.

Logatomes are used in particular in acoustic experiments. [13] They are also used in experiments in the psychology of learning as a way to examine speech recognition. [14] and in experimental psychology, especially the psychology of learning and memory.

Nonsense syllables were first introduced by Hermann Ebbinghaus [15] in his experiments on the learning of lists. His intention was that they would form a standard stimulus so that experiments would be reproducible. However, with increasing use it became apparent that different nonsense syllables were learned at very different rates, even when they had the same superficial structure. Glaze [16] introduced the concept of association value to describe these differences, which turned out to be reliable between people and situations. Since Glaze's time, experiments using nonsense syllables typically control association value in order to reduce variability in results between stimuli.

Nonsense syllables can vary in structure. The most used are the so-called CVC syllables, composed of a consonant, a vowel, and a consonant. These have the advantage that nearly all are pronounceable, that is, they fit the phonotactics of any language that uses closed syllables, such as English and German. They are often described as "CVC trigrams", reflecting their three-letter structure. Obviously many other structures are possible, and can be described on the same principles, e.g. VC, VCV, CVCV. But the CVC trigrams have been studied most intensively; for example, Glaze determined association values for 2019 of them. [16]

The term nonsense syllable is widely used to describe non-lexical vocables used in music, most notably in scat singing but also in many other forms of vocal music. Although such usages do not invoke the technical issues about structure and associability that are of concern in psychology, the essential meaning of the term is the same.

See also

Related Research Articles

<span class="mw-page-title-main">Jean Berko Gleason</span> American psycholinguist (born 1931)

Jean Berko Gleason is an American psycholinguist and professor emerita in the Department of Psychological and Brain Sciences at Boston University who has made fundamental contributions to the understanding of language acquisition in children, aphasia, gender differences in language development, and parent–child interactions.

Agraphia is an acquired neurological disorder causing a loss in the ability to communicate through writing, either due to some form of motor dysfunction or an inability to spell. The loss of writing ability may present with other language or neurological disorders; disorders appearing commonly with agraphia are alexia, aphasia, dysarthria, agnosia, acalculia and apraxia. The study of individuals with agraphia may provide more information about the pathways involved in writing, both language related and motoric. Agraphia cannot be directly treated, but individuals can learn techniques to help regain and rehabilitate some of their previous writing abilities. These techniques differ depending on the type of agraphia.

Phonotactics is a branch of phonology that deals with restrictions in a language on the permissible combinations of phonemes. Phonotactics defines permissible syllable structure, consonant clusters and vowel sequences by means of phonotactic constraints.

<span class="mw-page-title-main">Anomic aphasia</span> Medical condition

Anomic aphasia is a mild, fluent type of aphasia where individuals have word retrieval failures and cannot express the words they want to say. By contrast, anomia is a deficit of expressive language, and a symptom of all forms of aphasia, but patients whose primary deficit is word retrieval are diagnosed with anomic aphasia. Individuals with aphasia who display anomia can often describe an object in detail and maybe even use hand gestures to demonstrate how the object is used, but cannot find the appropriate word to name the object. Patients with anomic aphasia have relatively preserved speech fluency, repetition, comprehension, and grammatical speech.

<span class="mw-page-title-main">Wernicke's area</span> Speech comprehension region in the dominant hemisphere of the hominid brain

Wernicke's area, also called Wernicke's speech area, is one of the two parts of the cerebral cortex that are linked to speech, the other being Broca's area. It is involved in the comprehension of written and spoken language, in contrast to Broca's area, which is primarily involved in the production of language. It is traditionally thought to reside in Brodmann area 22, which is located in the superior temporal gyrus in the dominant cerebral hemisphere, which is the left hemisphere in about 95% of right-handed individuals and 70% of left-handed individuals.

In linguistics, a nonce word—also called an occasionalism—is any word (lexeme), or any sequence of sounds or letters, created for a single occasion or utterance but not otherwise understood or recognized as a word in a given language. Nonce words have a variety of functions and are most commonly used for humor, poetry, children's literature, linguistic experiments, psychological studies, and medical diagnoses, or they arise by accident.

In the broadest sense of the word, a vocable is any meaningful, identifiable utterance or writing, such as a word or term, that is fixed by their language and culture. The use of the term for words in the broad sense is archaic and the term is instead used for utterances which are not considered words, such as the English vocables of assent and denial, uh-huh and uh-uh, or the vocable of error, uh-oh.

<span class="mw-page-title-main">Conduction aphasia</span> Medical condition

Conduction aphasia, also called associative aphasia, is an uncommon form of difficulty in speaking (aphasia). It is caused by damage to the parietal lobe of the brain. An acquired language disorder, it is characterised by intact auditory comprehension, coherent speech production, but poor speech repetition. Affected people are fully capable of understanding what they are hearing, but fail to encode phonological information for production. This deficit is load-sensitive as the person shows significant difficulty repeating phrases, particularly as the phrases increase in length and complexity and as they stumble over words they are attempting to pronounce. People have frequent errors during spontaneous speech, such as substituting or transposing sounds. They are also aware of their errors and will show significant difficulty correcting them.

In linguistics, prosody is the study of elements of speech that are not individual phonetic segments but which are properties of syllables and larger units of speech, including linguistic functions such as intonation, stress, and rhythm. Such elements are known as suprasegmentals.

The lexical decision task (LDT) is a procedure used in many psychology and psycholinguistics experiments. The basic procedure involves measuring how quickly people classify stimuli as words or nonwords.

In cognitive psychology, the word superiority effect (WSE) refers to the phenomenon that people have better recognition of letters presented within words as compared to isolated letters and to letters presented within nonword strings. Studies have also found a WSE when letter identification within words is compared to letter identification within pseudowords and pseudohomophones.

Donald P. ShankweilerArchived 2006-06-26 at the Wayback Machine is an eminent psychologist and cognitive scientist who has done pioneering work on the representation and processing of language in the brain. He is a Professor Emeritus of Psychology at the University of Connecticut, a Senior Scientist at Haskins Laboratories in New Haven, Connecticut, and a member of the Board of Directors Archived 2021-01-26 at the Wayback Machine at Haskins. He is married to well-known American philosopher of biology, psychology, and language Ruth Millikan.

Paraphasia is a type of language output error commonly associated with aphasia, and characterized by the production of unintended syllables, words, or phrases during the effort to speak. Paraphasic errors are most common in patients with fluent forms of aphasia, and come in three forms: phonemic or literal, neologistic, and verbal. Paraphasias can affect metrical information, segmental information, number of syllables, or both. Some paraphasias preserve the meter without segmentation, and some do the opposite. However, most paraphasias affect both partially.

<span class="mw-page-title-main">Speech repetition</span> Repeating something someone else said

Speech repetition occurs when individuals speak the sounds that they have heard another person pronounce or say. In other words, it is the saying by one individual of the spoken vocalizations made by another individual. Speech repetition requires the person repeating the utterance to have the ability to map the sounds that they hear from the other person's oral pronunciation to similar places and manners of articulation in their own vocal tract.

Jargon aphasia is a type of fluent aphasia in which an individual's speech is incomprehensible, but appears to make sense to the individual. Persons experiencing this condition will either replace a desired word with another that sounds or looks like the original one, or has some other connection to it, or they will replace it with random sounds. Accordingly, persons with jargon aphasia often use neologisms, and may perseverate if they try to replace the words they can not find with sounds.

Dichotic listening is a psychological test commonly used to investigate selective attention and the lateralization of brain function within the auditory system. It is used within the fields of cognitive psychology and neuroscience.

In cognitive psychology, Brown–Peterson task refers to a cognitive exercise purposed for testing the limits of working memory duration. The task is named for two notable experiments published in the 1950s in which it was first documented, the first by John Brown and the second by husband and wife team Lloyd and Margaret Peterson.

Statistical learning is the ability for humans and other animals to extract statistical regularities from the world around them to learn about the environment. Although statistical learning is now thought to be a generalized learning mechanism, the phenomenon was first identified in human infant language acquisition.

The word frequency effect is a psychological phenomenon where recognition times are faster for words seen more frequently than for words seen less frequently. Word frequency depends on individual awareness of the tested language. The phenomenon can be extended to different characters of the word in non-alphabetic languages such as Chinese.

<span class="mw-page-title-main">Test of Word Reading Efficiency Second Edition</span> Reading ability test

Test of Word Reading Efficiency Second Edition or commonly known as TOWRE - 2 is a kind of reading test developed to test the efficiency of reading ability of children from age 6–24 years. It generally seeks to measure an individual's accuracy and fluency regarding two efficiencies; Sight Word Efficiency (SWE) and Phonemic Decoding Efficiency (PDE). SWE measures ability of pronouncing words that are printed and PDE assesses the quantity of pronouncing phonemically regular non-words. TOWRE - 2 is a very simple test which can be administered by teachers and aides, and it only takes five minutes to complete the procedure. It is commonly used in reading research, classroom assessment and clinical practice. This test is both straightforward and easy to use because it does not require a lot of materials and can be administered by teachers and aides.

References

  1. Rathvon, Natalie (2004). Early Reading Assessment: A Practitioner's Handbook. New York: The Guilford Press. p. 138. ISBN   1572309849.
  2. Trezek, Beverly J.; Paul, Peter V.; Wang, Ye (2009). Reading and Deafness: Theory, Research, and Practice. New York: Delmar Cengage Learning. p. 212. ISBN   9781428324350.
  3. Joshi, R. M.; Leong, C. K. (2013). Reading Disabilities: Diagnosis and Component Processes. Dordrecht: Springer Science+Business Media, B.V. p. 95. ISBN   9789401048781.
  4. Keuleers, Emmanuel; Brysbaert, Marc (August 2010). "Wuggy: A multilingual pseudoword generator". Behavior Research Methods. 42 (3): 627–633. doi:10.3758/BRM.42.3.627. ISSN   1554-351X. PMID   20805584. S2CID   3671463.
  5. Slabakova, Roumyana (2016). Second Language Acquisition. New York: Oxford University Press. p. 120. ISBN   9780199687268.
  6. Ozubko, J. D.; Joordens, S. (2011). "The similarities (and familiarities) of pseudowords and extremely high-frequency words: Examining a familiarity-based explanation of the pseudoword effect". Journal of Experimental Psychology: Learning, Memory, and Cognition. 123: 37(1).
  7. Laganaro, M. (2008). "Is there syllable frequency effect in aphasia or in apraxia of speech or both?". Aphasiology. 1191–1200: 22(11).
  8. Rodrigues, J. C.; da Fontoura, D. R.; de Salles, J. F. (2014). "Acquired dysgraphia in adults following right or left-hemisphere stroke". Dementia & Neuropsychologia. 8 (3): 236–242. doi:10.1590/S1980-57642014DN83000007. PMC   5619400 . PMID   29213909.
  9. Henry, M. L.; Beeson, P. M.; Stark, A. J.; Rapcsak, S. Z. (2007). "The role of left perisylvian cortical regions in spelling". Brain and Language. 100 (1): 44–52. doi:10.1016/j.bandl.2006.06.011. PMC   2362101 . PMID   16890279.
  10. Stanovich, K. E. (2000). "Progress in understanding reading". Guilford.
  11. Good, R. H.; Kaminski, R. A. (2002). "Dynamic indicators of basic early literacy skills: Nonsense word fluency". Institute for the Development of Educational Fluency.
  12. Souza, Cintia Alves de; Escare, Andrezza Gonzalez; Lemos, Stela Maris Aguiar (2019). "Reading competence of words and pseudowords, school performance and listening skills in primary schools". Audiology - Communication Research. 24.
  13. Welge-Lüßen, Antje; Hauser, R.; Erdmann, J.; Schwob, Ch.; Probst, R. (2008). "Sprachaudiometrie mit Logatomen*". Laryngo-Rhino-Otologie. 76 (2): 57–64. doi:10.1055/s-2007-997389. PMID   9172631.
  14. Scharenborg, O (2007). "Reaching over the gap: A review of efforts to link human and automatic speech recognition research" (PDF). Speech Communication. 49 (5): 336–347. doi:10.1016/j.specom.2007.01.009. hdl: 11858/00-001M-0000-0012-D1D3-6 .
  15. Ebbinghaus, H. (1964). Memory. New York: Dover. (Originally published 1885.)
  16. 1 2 Glaze, J. A. (1928). The association value of non-sense syllables. Pedagogical Seminary and Journal of Genetic Psychology, 35, 255-269.