Q-slope

Last updated

The Q-slope method for rock slope engineering and rock mass classification is developed by Barton and Bar. [1] [2] [3] It expresses the quality of the rock mass for slope stability using the Q-slope value, from which long-term stable, reinforcement-free slope angles can be derived.

The Q-slope value can be determined with:

Q-slope utilizes similar parameters to the Q-system [4] which has been used for over 40 years in the design of ground support for tunnels and underground excavations. The first four parameters, RQD (rock quality designation), Jn (joint set number), Jr (joint roughness number) and Ja (joint alteration number) are the same as in the Q-system. However, the frictional resistance pair Jr and Ja can apply, when needed, to individual sides of a potentially unstable wedges. Simply applied orientation factors (0), like (Jr/Ja)1x0.7 for set J1 and (Jr/Ja)2x0.9 for set J2, provide estimates of overall whole-wedge frictional resistance reduction, if appropriate. The Q-system term Jw is replaced with Jwice, and takes into account a wider range of environmental conditions appropriate to rock slopes, which are exposed to the environment indefinitely. The conditions include the extremes of erosive intense rainfall, ice wedging, as may seasonally occur at opposite ends of the rock-type and regional spectrum. There are also slope-relevant SRF (strength reduction factor) categories.

Multiplication of these terms results in the Q-slope value, which can range between 0.001 (exceptionally poor) to 1000 (exceptionally good) for different rock masses.

Q-Slope Stability Chart Q-Slope Stability Chart.jpg
Q-Slope Stability Chart

A simple formula for the steepest slope angle (β), in degrees, not requiring reinforcement or support is given by:

Q-slope is intended for use in reinforcement-free site access road cuts, roads or railway cuttings, or individual benches in open cast mines. It is based on over 500 case studies in slopes ranging from 35 to 90 degrees in fresh hard rock slopes as well as weak, weathered and saprolitic rock slopes. [1] [2] [3] [5] Q-slope has also been applied in slopes with interbedded strata, [6] in faulted rocks and fault zones, [7] and in alpine and Arctic environments, which are susceptible to freeze-thaw and ice wedging. [8]

Rock slope design techniques have been derived using Q-slope and geophysical survey data, primarily based on Vp (P-wave velocity). [9]

Q-slope has been applied in conjunction with remote sensing (aerial photogrammetry) to assess slope stability in hazardous and 'out-of-reach' natural and excavated slopes. [10]

Q-slope is not intended as a substitute for conventional and more detailed slope stability analyses, where these are warranted.

Q-slope has been correlated with other rock mass classifications including BQ, [11] RHRS, [12] and SMR. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Geotechnical engineering</span> Scientific study of earth materials in engineering problems

Geotechnical engineering, also known as geotechnics, is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics to solve its engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences.

<span class="mw-page-title-main">Soil mechanics</span> Branch of soil physics and applied mechanics that describes the behavior of soils

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, hydrology and soil physics.

<span class="mw-page-title-main">Slope stability</span> Stability of soil or rock slopes

Slope stability refers to the condition of inclined soil or rock slopes to withstand or undergo movement; the opposite condition is called slope instability or slope failure. The stability condition of slopes is a subject of study and research in soil mechanics, geotechnical engineering and engineering geology. Analyses are generally aimed at understanding the causes of an occurred slope failure, or the factors that can potentially trigger a slope movement, resulting in a landslide, as well as at preventing the initiation of such movement, slowing it down or arresting it through mitigation countermeasures.

Rock mass classification systems are used for various engineering design and stability analysis. These are based on empirical relations between rock mass parameters and engineering applications, such as tunnels, slopes, foundations, and excavatability. The first rock mass classification system in geotechnical engineering was proposed in 1946 for tunnels with steel set support.

Rock Structure Rating (RSR) is a quantitative method for describing quality of a rock mass and appropriate ground support, in particular, for steel-rib support, developed by Wickham, Tiedemann and Skinner.

<span class="mw-page-title-main">Rock mechanics</span> Study of the mechanical behavior of rocks

Rock mechanics is a theoretical and applied science of the mechanical behavior of rocks and rock masses.

<span class="mw-page-title-main">Fracture toughness</span> Stress intensity factor at which a cracks propagation increases drastically

In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.

<span class="mw-page-title-main">Probabilistic design</span> Discipline within engineering design

Probabilistic design is a discipline within engineering design. It deals primarily with the consideration and minimization of the effects of random variability upon the performance of an engineering system during the design phase. Typically, these effects studied and optimized are related to quality and reliability. It differs from the classical approach to design by assuming a small probability of failure instead of using the safety factor. Probabilistic design is used in a variety of different applications to assess the likelihood of failure. Disciplines which extensively use probabilistic design principles include product design, quality control, systems engineering, machine design, civil engineering and manufacturing.

Landslide mitigation refers to several human-made activities on slopes with the goal of lessening the effect of landslides. Landslides can be triggered by many, sometimes concomitant causes. In addition to shallow erosion or reduction of shear strength caused by seasonal rainfall, landslides may be triggered by anthropic activities, such as adding excessive weight above the slope, digging at mid-slope or at the foot of the slope. Often, individual phenomena join to generate instability over time, which often does not allow a reconstruction of the evolution of a particular landslide. Therefore, landslide hazard mitigation measures are not generally classified according to the phenomenon that might cause a landslide. Instead, they are classified by the sort of slope stabilization method used:

Slope mass rating (SMR) is a rock mass classification scheme developed by Manuel Romana to describe the strength of an individual rock outcrop or slope. The system is founded upon the more widely used RMR scheme, which is modified with quantitative guidelines to the rate the influence of adverse joint orientations.

In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture. Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, and is thus expressed in terms of energy per unit area. Various energy balances can be constructed relating the energy released during fracture to the energy of the resulting new surface, as well as other dissipative processes such as plasticity and heat generation. The energy release rate is central to the field of fracture mechanics when solving problems and estimating material properties related to fracture and fatigue.

<span class="mw-page-title-main">Slope stability analysis</span> Method for analyzing stability of slopes of soil or rock

Slope stability analysis is a static or dynamic, analytical or empirical method to evaluate the stability of slopes of soil- and rock-fill dams, embankments, excavated slopes, and natural slopes in soil and rock. It is performed to assess the safe design of a human-made or natural slopes and the equilibrium conditions. Slope stability is the resistance of inclined surface to failure by sliding or collapsing. The main objectives of slope stability analysis are finding endangered areas, investigation of potential failure mechanisms, determination of the slope sensitivity to different triggering mechanisms, designing of optimal slopes with regard to safety, reliability and economics, designing possible remedial measures, e.g. barriers and stabilization.

The Geological Strength Index (GSI) system, proposed in 1994 by Evert Hoek, is used for the estimation of the rock mass strength and the rock mass deformation modulus.

Core recovery parameters describe the quality of core recovered from a borehole.

A discontinuity in geotechnical engineering is a plane or surface that marks a change in physical or chemical characteristics in a soil or rock mass. A discontinuity can be, for example, a bedding, schistosity, foliation, joint, cleavage, fracture, fissure, crack, or fault plane. A division is made between mechanical and integral discontinuities. Discontinuities may occur multiple times with broadly the same mechanical characteristics in a discontinuity set, or may be a single discontinuity. A discontinuity makes a soil or rock mass anisotropic.

Within geotechnical engineering, Laubscher developed the Mining Rock Mass Rating (MRMR) system by modifying the Rock Mass Rating (RMR) system of Z. T. Bieniawski. In the MRMR system the stability and support are determined with the following equations:

The Q-system for rock mass classification is developed by Barton, Lien, and Lunde. It expresses the quality of the rock mass in the so-called Q-value, on which design are based and support recommendations for underground excavations.

The shear strength of a discontinuity in a soil or rock mass may have a strong impact on the mechanical behavior of a soil or rock mass. The shear strength of a discontinuity is often considerably lower than the shear strength of the blocks of intact material in between the discontinuities, and therefore influences, for example, tunnel, foundation, or slope engineering, but also the stability of natural slopes. Many slopes, natural and man-made, fail due to a low shear strength of discontinuities in the soil or rock mass in the slope. The deformation characteristics of a soil or rock mass are also influenced by the shear strength of the discontinuities. For example, the modulus of deformation is reduced, and the deformation becomes plastic rather than elastic. This may cause, for example, larger settlement of foundations, which is also permanent even if the load is only temporary. Furthermore, the shear strength of discontinuities influences the stress distribution in a soil or rock mass.

The sliding criterion (discontinuity) is a tool to estimate easily the shear strength properties of a discontinuity in a rock mass based on visual and tactile characterization of the discontinuity. The shear strength of a discontinuity is important in, for example, tunnel, foundation, or slope engineering, but also stability of natural slopes is often governed by the shear strength along discontinuities.

Geological structure measurement by LiDAR technology is a remote sensing method applied in structural geology. It enables monitoring and characterisation of rock bodies. This method's typical use is to acquire high resolution structural and deformational data for identifying geological hazards risk, such as assessing rockfall risks or studying pre-earthquake deformation signs.

References

  1. 1 2 Barton, N.R.; Bar, N. (2015). "Introducing the Q-slope method and its intended use within civil and mining engineering projects". In Schubert W (ed.), Future Development of Rock Mechanics; Proc. ISRM reg. symp. Eurock 2015 & 64th Geomechanics Colloquium, Salzburg 7–10 October 2015. OGG, pp. 157-162.
  2. 1 2 Bar, N.; Barton, N.R. (2016). "Empirical slope design for hard and soft rocks using Q-slope". In Proc. 50th US Rock Mechanics / Geomechanics Symposium, Houston 26–29 June 2016. ARMA, 8p.
  3. 1 2 Bar, N.; Barton, N.R. (2017). "The Q-slope Method for Rock Slope Engineering". Rock Mechanics & Rock Engineering, Vol 50, Springer, Vienna, https://doi.org/10.1007/s00603-017-1305-0.
  4. Barton, N.R.; Lien, R.; Lunde, J. (1974). "Engineering classification of rock masses for the design of tunnel support". Rock Mechanics and rock engineering. Vol. 6, Springer-Verlag, pp. 189-236.
  5. Bar, N.; Barton, N.R.; Ryan, C.A. (2016). "Application of the Q-slope method to highly weathered and saprolitic rocks in Far North Queensland". In Ulusay et al. (eds.), Rock Mechanics and Rock Engineering: From the Past to the Future Development of Rock Mechanics; Taylor & Francis Group, London, pp. 585-590.
  6. Bar, N.; McQuillan, A. (2021). Q-slope application to coal mine stability. IOP Conference Series Earth and Environmental Science, 833(1):012043, DOI: 10.1088/1755-1315/833/1/012043
  7. Barton, N.R., Bar, N. (2019). The Q-Slope Method for Rock Slope Engineering in Faulted Rocks and Fault Zones. Proc. ISRM 14th International Congress of Rock Mechanics, Iguassu Falls, Brazil
  8. Bar, N.; Barton, N.R. (2020). "Q-Slope addressing ice wedging and freeze-thaw effects in Arctic and Alpine environments". Proc. ISRM International Symposium Eurock 2020, Trondheim 14–19 June 2020.
  9. Bar, N.; Barton, N.R. (2018) (2018). "Rock Slope Design using Q-slope and Geophysical Survey Data". Periodica Polytechnica Civil Engineering. doi: 10.3311/PPci.12287 .{{cite journal}}: CS1 maint: numeric names: authors list (link)
  10. Bar, N.; Borgatti, L.; Donati, D.; Francioni, M.; Salvini, R.; Ghirotti, M. (2021). Classification of natural and engineered rock slopes using UAV photogrammetry for assessing stability. IOP Conference Series Earth and Environmental Science, 833(1):012046. DOI: 10.1088/1755-1315/833/1/012046
  11. Song, Y.; Xue, H.; Meng, X. (2019). Evaluation method of slope stability based on the Qslope system and BQ method. Bulletin of Engineering Geology and the Environment, 78(4). DOI: 10.1007/s10064-019-01459-5.
  12. Saito de Paula, M.; Maion, A.V.; Campanha, G.A.C.; Castilho, L.M.N.; Cunha, M.A. (2019). Q-Slope and RHRS for the evaluation of highway rock slopes – Serra do Mar, Brazil. Proc. 14th International Congress on Rock Mechanics and Rock Engineering, Igaussu Falls, Brazil.
  13. Jorda-Bordehore, L.; Bar, N.; Cano, M.; Riquelme, A.; Tomas, R. (2018). Stability assessment of rock slopes using empirical approaches: comparison between Slope Mass Rating and Q-Slope. Proc. XIV International Congress on Energy and Mineral Resources. Slope Stability 2018. Seville, Spain.