QARS

Last updated
QARS1
Available structures
PDB Human UniProt search: PDBe RCSB
Identifiers
Aliases QARS1 , GLNRS, MSCCA, PRO2195, glutaminyl-tRNA synthetase, glutaminyl-tRNA synthetase 1, QARS
External IDs OMIM: 603727 HomoloGene: 3704 GeneCards: QARS1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001272073
NM_005051

n/a

RefSeq (protein)

NP_001259002
NP_005042

n/a

Location (UCSC) Chr 3: 49.1 – 49.11 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Glutaminyl-tRNA synthetase is an enzyme that in humans is encoded by the QARS gene. [3] [4] [5]

Contents

Function

Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. In metazoans, 9 aminoacyl-tRNA synthetases specific for glutamine (gln), glutamic acid (glu), and 7 other amino acids are associated within a multienzyme complex. Although present in eukaryotes, glutaminyl-tRNA synthetase (QARS) is absent from many prokaryotes, mitochondria, and chloroplasts, in which Gln-tRNA(Gln) is formed by transamidation of the misacylated Glu-tRNA(Gln). Glutaminyl-tRNA synthetase belongs to the class-I aminoacyl-tRNA synthetase family. [5] Almost all eukaryotic GlnRS enzymes possess a YqeY domain at the N-terminus, which affects affinity for the tRNA; in some bacterial species, such as Deinococcus radiodurans , YqeY is present as a C-terminal domain with similar function. [6]

Interactions

QARS has been shown to interact with RARS. [7]

Related Research Articles

<span class="mw-page-title-main">Aminoacyl tRNA synthetase</span> Class of enzymes

An aminoacyl-tRNA synthetase, also called tRNA-ligase, is an enzyme that attaches the appropriate amino acid onto its corresponding tRNA. It does so by catalyzing the transesterification of a specific cognate amino acid or its precursor to one of all its compatible cognate tRNAs to form an aminoacyl-tRNA. In humans, the 20 different types of aa-tRNA are made by the 20 different aminoacyl-tRNA synthetases, one for each amino acid of the genetic code.

<span class="mw-page-title-main">ASK1</span> Protein-coding gene in the species Homo sapiens

Apoptosis signal-regulating kinase 1 (ASK1) also known as mitogen-activated protein kinase 5 (MAP3K5) is a member of MAP kinase family and as such a part of mitogen-activated protein kinase pathway. It activates c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases in a Raf-independent fashion in response to an array of stresses such as oxidative stress, endoplasmic reticulum stress and calcium influx. ASK1 has been found to be involved in cancer, diabetes, rheumatoid arthritis, cardiovascular and neurodegenerative diseases.

<span class="mw-page-title-main">EEF1D</span> Protein-coding gene in the species Homo sapiens

Elongation factor 1-delta is a protein that in humans is encoded by the EEF1D gene.

<span class="mw-page-title-main">Eukaryotic translation elongation factor 1 alpha 1</span> Constitutive promoter

Elongation factor 1-alpha 1 (eEF1a1) is a translation elongation protein, expressed across eukaryotes. In humans, it is encoded by the EEF1A1 gene.

<span class="mw-page-title-main">WARS (gene)</span> Protein-coding gene in the species Homo sapiens

Tryptophanyl-tRNA synthetase, cytoplasmic is an aminoacyl-tRNA synthetase enzyme that attaches the amino acid tryptophan to its cognate tRNA. In humans, it is encoded by the WARS gene.

<span class="mw-page-title-main">EEF1B2</span> Protein-coding gene in the species Homo sapiens

Elongation factor 1-beta is a protein that in humans is encoded by the EEF1B2 gene.

<span class="mw-page-title-main">SCYE1</span> Protein-coding gene in the species Homo sapiens

Aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 is a protein that in humans is encoded by the AIMP1 gene.

<span class="mw-page-title-main">KARS (gene)</span> Protein-coding gene in the species Homo sapiens

Lysyl-tRNA synthetase is an enzyme that in humans is encoded by the KARS gene.

<span class="mw-page-title-main">EEF1G</span> Protein-coding gene in the species Homo sapiens

Elongation factor 1-gamma is a protein that in humans is encoded by the EEF1G gene.

<span class="mw-page-title-main">YARS</span> Protein-coding gene in humans

Tyrosyl-tRNA synthetase, cytoplasmic, also known as Tyrosine-tRNA ligase, is an enzyme that in humans is encoded by the YARS gene.

<span class="mw-page-title-main">EPRS</span> Protein-coding gene in the species Homo sapiens

Bifunctional aminoacyl-tRNA synthetase is an enzyme that in humans is encoded by the EPRS gene.

<span class="mw-page-title-main">RARS (gene)</span> Protein-coding gene in the species Homo sapiens

Arginyl-tRNA synthetase, cytoplasmic is an enzyme that in humans is encoded by the RARS gene.

<span class="mw-page-title-main">DARS (gene)</span> Protein-coding gene in the species Homo sapiens

Aspartyl-tRNA synthetase, cytoplasmic is an enzyme that in humans is encoded by the DARS gene.

<span class="mw-page-title-main">Multisynthetase complex auxiliary component p38</span> Protein-coding gene in the species Homo sapiens

Aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 is an enzyme that in humans is encoded by the AIMP2 gene.

<span class="mw-page-title-main">Leucyl-tRNA synthetase</span> Protein-coding gene in the species Homo sapiens

Leucyl-tRNA synthetase, cytoplasmic is an enzyme that in humans is encoded by the LARS gene.

<span class="mw-page-title-main">MARS (gene)</span>

Methionyl-tRNA synthetase, cytoplasmic is an enzyme that in humans is encoded by the MARS gene.

<span class="mw-page-title-main">IARS</span> Protein-coding gene in the species Homo sapiens

Isoleucyl-tRNA synthetase, cytoplasmic is an enzyme that in humans is encoded by the IARS1 gene.

The aminoacyl-tRNA synthetases catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction. These proteins differ widely in size and oligomeric state, and have limited sequence homology. The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. Class I aminoacyl-tRNA synthetases contain a characteristic Rossmann fold catalytic domain and are mostly monomeric. Class II aminoacyl-tRNA synthetases share an anti-parallel beta-sheet fold flanked by alpha-helices, and are mostly dimeric or multimeric, containing at least three conserved regions. However, tRNA binding involves an alpha-helical structure that is conserved between class I and class II synthetases. In reactions catalysed by the class I aminoacyl-tRNA synthetases, the aminoacyl group is coupled to the 2'-hydroxyl of the tRNA, while, in class II reactions, the 3'-hydroxyl site is preferred. The synthetases specific for arginine, cysteine, glutamic acid, glutamine, isoleucine, leucine, methionine, tyrosine, tryptophan and valine belong to class I synthetases; these synthetases are further divided into three subclasses, a, b and c, according to sequence homology. The synthetases specific for alanine, asparagine, aspartic acid, glycine, histidine, lysine, phenylalanine, proline, serine, and threonine belong to class-II synthetases.

<span class="mw-page-title-main">YqeY protein domain</span>

In molecular biology, YqeY is a type of protein domain of unknown function. It is thought to have a role in protein synthesis, facilitating the production of charged transfer RNA used in the process of translating mRNA into protein. It is present as a domain of glutaminyl-tRNA synthetase (GlnRS) in almost all eukaryotes.

Karin Musier-Forsyth, an American biochemist, is an Ohio Eminent Scholar on the faculty of the Department of Chemistry & Biochemistry at Ohio State University. Musier-Forsyth's research involves biochemical, biophysical and cell-based approaches to understand the interactions of proteins and RNAs involved in protein synthesis and viral replication, especially in HIV.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000172053 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Lamour V, Quevillon S, Diriong S, N'Guyen VC, Lipinski M, Mirande M (Aug 1994). "Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer". Proceedings of the National Academy of Sciences of the United States of America. 91 (18): 8670–4. Bibcode:1994PNAS...91.8670L. doi: 10.1073/pnas.91.18.8670 . PMC   44668 . PMID   8078941.
  4. Durkin ME, Jäger AC, Khurana TS, Nielsen FC, Albrechtsen R, Wewer UM (July 1999). "Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS)". Cytogenetics and Cell Genetics. 84 (3–4): 173–8. doi:10.1159/000015249. PMID   10393422. S2CID   36315977.
  5. 1 2 "Entrez Gene: QARS glutaminyl-tRNA synthetase".
  6. Hadd A, Perona JJ (Oct 2014). "Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases". Journal of Molecular Biology. 426 (21): 3619–33. doi:10.1016/j.jmb.2014.08.006. PMID   25149203.
  7. Kim T, Park SG, Kim JE, Seol W, Ko YG, Kim S (Jul 2000). "Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex". The Journal of Biological Chemistry. 275 (28): 21768–72. doi: 10.1074/jbc.M002404200 . PMID   10801842.

Further reading