Quantum tunnelling composite

Last updated

Quantum tunnelling composites (QTCs) are composite materials of metals and non-conducting elastomeric binder, used as pressure sensors. They use quantum tunnelling: without pressure, the conductive elements are too far apart to conduct electricity; when pressure is applied, they move closer and electrons can tunnel through the insulator. The effect is far more pronounced than would be expected from classical (non-quantum) effects alone, as classical electrical resistance is linear (proportional to distance), while quantum tunnelling is exponential with decreasing distance, allowing the resistance to change by a factor of up to 1012 between pressured and unpressured states. [1]

Contents

Quantum tunneling composites hold multiple designations in specialized literature, such as: conductive/semi-conductive polymer composite, [2] piezo-resistive sensor [3] and force-sensing resistor (FSR). [4] However, in some cases Force-sensing resistors may operate predominantly under percolation regime; this implies that the composite resistance grows for an incremental applied stress or force.

Introduction

QTCs were discovered in 1996 by technician David Lussey while he was searching for a way to develop an electrically conductive adhesive. [5] Lussey founded Peratech Ltd, a company devoted to research work and usage of QTCs. Peratech Ltd. and other companies are working on developing quantum tunneling composite to improve touch technology. Currently, there is restricted use of QTC due to its high cost, but eventually this technology is expected to become available to the general user. Quantum tunneling composites are combinations of polymer composites with elastic, rubber-like properties elastomer, and metal particles (nickel). Due to a no-air gap in the sensor contamination or interference between the contact points is impossible. There is also little to no chance of arcing, electrical sparks between contact points. In the QTC's inactive state, the conductive elements are too far from one another to pass electron charges. Thus, current does not flow when there is no pressure on the quantum-tunneling composite. A characterization of a QTC is its spiky silicon covered surface. The spikes do not actually touch, but when a force is applied to the QTC, the spikes move closer to each other and a [quantum] effect occurs as a high concentration of electrons flow from one spike tip to the next. The electric current stops when the force is taken away. [6]

Types

QTCs come in different forms and each form is used differently but has a similar resistance change when deformed. QTC pills are the most commonly used type of QTC. Pills are pressure sensitive variable resistors. The amount of electric current passed is exponentially proportionate to the amount of pressure applied. QTC pills can be used as input sensors which respond to an applied force. These pills can also be used in devices to control higher currents than QTC sheets. QTC sheets are composed of three layers: a thin layer of QTC material, a conductive material and a plastic insulator. QTC sheets allow a quick switch from high to low resistance and vice versa. [7]

Applications

In February 2008 the newly formed company QIO Systems Inc gained, in a deal with Peratech, the worldwide exclusive license to the intellectual property and design rights for the electronics and textile touchpads based on QTC technology [8] and for the manufacture and sale of ElekTex (QTC-based) textile touchpads for use in both consumer and commercial applications. [9]

QTCs were used to provide fingertip sensitivity in NASA's Robonaut in 2012. Robonaut was able to survive and send detailed feedback from space. The sensors on the human-like robot were able to tell how hard and where it was gripping something. [10]

Quantum tunneling composites are relatively new and are still being researched and developed. QTC has been implemented within clothing to make “smart”, touchable membrane control panels to control electronic devices within clothing, e.g. mp3 players or mobile phones. This allows equipment to be operated without removing clothing layers or opening fastenings and makes standard equipment usable in extreme weather or environmental conditions such as Arctic/Antarctic exploration or spacesuits.

The following are possible uses of QTCs:

Related Research Articles

<span class="mw-page-title-main">Electric current</span> Flow of electric charge

An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge carriers, which may be one of several types of particles, depending on the conductor. In electric circuits the charge carriers are often electrons moving through a wire. In semiconductors they can be electrons or holes. In an electrolyte the charge carriers are ions, while in plasma, an ionized gas, they are ions and electrons.

<span class="mw-page-title-main">Ohm's law</span> Law of electrical current and voltage

Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the three mathematical equations used to describe this relationship:

<span class="mw-page-title-main">Potentiometer</span> Type of resistor, usually with three terminals

A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an adjustable voltage divider. If only two terminals are used, one end and the wiper, it acts as a variable resistor or rheostat.

<span class="mw-page-title-main">Strain gauge</span> Electronic component used to measure strain

A strain gauge is a device used to measure strain on an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as cyanoacrylate. As the object is deformed, the foil is deformed, causing its electrical resistance to change. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor.

<span class="mw-page-title-main">Conductive polymer</span> Organic polymers that conduct electricity

Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The main advantage of conductive polymers is that they are easy to process, mainly by dispersion. Conductive polymers are generally not thermoplastics, i.e., they are not thermoformable. But, like insulating polymers, they are organic materials. They can offer high electrical conductivity but do not show similar mechanical properties to other commercially available polymers. The electrical properties can be fine-tuned using the methods of organic synthesis and by advanced dispersion techniques.

An antifuse is an electrical device that performs the opposite function to a fuse. Whereas a fuse starts with a low resistance and is designed to permanently break or open an electrically conductive path, an antifuse starts with a high resistance--an open circuit--and programming it converts it into a permanent electrically conductive path. This technology has many applications. Antifuses are best known for their use in mini-light style low-voltage Christmas tree lights.

<span class="mw-page-title-main">Electroactive polymer</span>

An electroactive polymer (EAP) is a polymer that exhibits a change in size or shape when stimulated by an electric field. The most common applications of this type of material are in actuators and sensors. A typical characteristic property of an EAP is that they will undergo a large amount of deformation while sustaining large forces.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.

<span class="mw-page-title-main">Piezoelectric sensor</span> Type of sensor

A piezoelectric sensor is a device that uses the piezoelectric effect to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge. The prefix piezo- is Greek for 'press' or 'squeeze'.

<span class="mw-page-title-main">PEDOT-TMA</span> Chemical compound

Poly(3,4-ethylenedioxythiophene)-tetramethacrylate or PEDOT-TMA is a p-type conducting polymer based on 3,4-ethylenedioxylthiophene or the EDOT monomer. It is a modification of the PEDOT structure. Advantages of this polymer relative to PEDOT are that it is dispersible in organic solvents, and it is non-corrosive. PEDOT-TMA was developed under a contract with the National Science Foundation, and it was first announced publicly on April 12, 2004. The trade name for PEDOT-TMA is Oligotron. PEDOT-TMA was featured in an article entitled "Next Stretch for Plastic Electronics" that appeared in Scientific American in 2004. The U.S. Patent office issued a patent protecting PEDOT-TMA on April 22, 2008.

Organic photovoltaic devices (OPVs) are fabricated from thin films of organic semiconductors, such as polymers and small-molecule compounds, and are typically on the order of 100 nm thick. Because polymer based OPVs can be made using a coating process such as spin coating or inkjet printing, they are an attractive option for inexpensively covering large areas as well as flexible plastic surfaces. A promising low cost alternative to conventional solar cells made of crystalline silicon, there is a large amount of research being dedicated throughout industry and academia towards developing OPVs and increasing their power conversion efficiency.

In electrical engineering, capacitive sensing is a technology, based on capacitive coupling, that can detect and measure anything that is conductive or has a dielectric constant different from air. Many types of sensors use capacitive sensing, including sensors to detect and measure proximity, pressure, position and displacement, force, humidity, fluid level, and acceleration. Human interface devices based on capacitive sensing, such as touchpads, can replace the computer mouse. Digital audio players, mobile phones, and tablet computers will sometimes use capacitive sensing touchscreens as input devices. Capacitive sensors can also replace mechanical buttons.

<span class="mw-page-title-main">Solid</span> State of matter

Solid is one of the four fundamental states of matter along with liquid, gas, and plasma. The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural rigidity and resistance to a force applied to the surface. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire available volume like a gas. The atoms in a solid are bound to each other, either in a regular geometric lattice, or irregularly. Solids cannot be compressed with little pressure whereas gases can be compressed with little pressure because the molecules in a gas are loosely packed.

<span class="mw-page-title-main">Force-sensing resistor</span> Material whose resistance changes when a force is applied

A force-sensing resistor is a material whose resistance changes when a force, pressure or mechanical stress is applied. They are also known as force-sensitive resistor and are sometimes referred to by the initialism FSR.

Velostat, also known as Linqstat, is a packaging material made of a polymeric foil (polyolefins) impregnated with carbon black to make it somewhat electrically conductive. It is used for the protection of items or devices that are susceptible to damage from electrostatic discharge. It was developed by Custom Materials, now part of 3M. Velostat is a U.S. registered trademark (4,964,564) of Desco Industries Inc. Desco Industries purchased the assets of the 3M Static Control business on January 2, 2015.

Teledeltos paper is an electrically conductive paper. It is formed by a coating of carbon on one side of a sheet of paper, giving one black and one white side. Western Union developed Teledeltos paper in the late 1940s for use in spark printer based fax machines and chart recorders.

Electronic skin refers to flexible, stretchable and self-healing electronics that are able to mimic functionalities of human or animal skin. The broad class of materials often contain sensing abilities that are intended to reproduce the capabilities of human skin to respond to environmental factors such as changes in heat and pressure.

<span class="mw-page-title-main">Field-effect transistor</span> Type of transistor

The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. It comes in two types: junction FET (JFET) and metal-oxide-semiconductor FET (MOSFET). FETs have three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source.

<span class="mw-page-title-main">Co-fired ceramic</span> Integrated circuit package made out of fired ceramic material

Co-fired ceramic devices are monolithic, ceramic microelectronic devices where the entire ceramic support structure and any conductive, resistive, and dielectric materials are fired in a kiln at the same time. Typical devices include capacitors, inductors, resistors, transformers, and hybrid circuits. The technology is also used for robust assembly and packaging of electronic components multi-layer packaging in the electronics industry, such as military electronics, MEMS, microprocessor and RF applications.

<span class="mw-page-title-main">Chemiresistor</span>

A chemiresistor is a material that changes its electrical resistance in response to changes in the nearby chemical environment. Chemiresistors are a class of chemical sensors that rely on the direct chemical interaction between the sensing material and the analyte. The sensing material and the analyte can interact by covalent bonding, hydrogen bonding, or molecular recognition. Several different materials have chemiresistor properties: metal-oxide semiconductors, some conductive polymers, and nanomaterials like graphene, carbon nanotubes and nanoparticles. Typically these materials are used as partially selective sensors in devices like electronic tongues or electronic noses.

References

  1. D. Bloor; A. Graham; E. J. Williams; P. J. Laughlin & D. Lussey (2006). "Metal–polymer composite with nanostructured filler particles and amplified physical properties" (PDF). Applied Physics Letters . 88 (10): 102103. Bibcode:2006ApPhL..88j2103B. doi:10.1063/1.2183359.
  2. Duan, Lingyan; Fu, Sirui; Deng, Hua; Zhang, Qin; Wang, Ke; Chen, Feng; Fu, Qiang (August 15, 2014). "The resistivity–strain behavior of conductive polymer composites: stability and sensitivity". J. Mater. Chem. A. 2 (40): 17085–17098. doi:10.1039/C4TA03645J. ISSN   2050-7488.
  3. Wang, Luheng (March 20, 2015). "Piezoresistive Sensor Based on Conductive Polymer Composite With Transverse Electrodes". IEEE Transactions on Electron Devices. 62 (4): 1299–1305. Bibcode:2015ITED...62.1299W. doi:10.1109/TED.2015.2403474. ISSN   0018-9383. S2CID   30516143.
  4. Paredes-Madrid, L; Palacio, C; Matute, A; Parra, C (September 14, 2017). "Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs) under Static Loading Conditions". Sensors. 17 (9): 2108. Bibcode:2017Senso..17.2108P. doi: 10.3390/s17092108 . PMC   5621037 . PMID   28906467.
  5. Peratech (February 11, 2016). "What is QTC?". www.peratech.com. Retrieved April 4, 2019.
  6. Lussey, David (January 2012). "Quantum-Tunneling Composite Touch-Screen Technology" . Retrieved October 30, 2014.
  7. Ramesh, K Satya. "Quantum Tunneling Composite". Kakinada Institute of Engineering & Technology.
  8. "Real-time connected worker platform to improve industrial safety". www.eleksen.com. Retrieved April 4, 2019.
  9. "Eleksen gets a new home by QIO Systems - John Collins, Vassilis Seferidis, Systems, Eleksen, Eleksen's, eSystem, ElekTex, Collins, Vassilis, Interactive - talk2myShirt". Archived from the original on July 2, 2010. Retrieved May 27, 2009.
  10. "Peratech presented with award by NASA for its QTC touch technology". October 15, 2012. Archived from the original on November 29, 2014. Retrieved November 10, 2014.
  11. Kharbanda, Rajat (December 1, 2012). "Quantum Tunneling Composites (QTC): The Next Generation Touch Material". CMR. Retrieved November 5, 2014.