Quantum walks are quantum analogs of classical random walks. In contrast to the classical random walk, where the walker occupies definite states and the randomness arises due to stochastic transitions between states, in quantum walks randomness arises through (1) quantum superposition of states, (2) non-random, reversible unitary evolution and (3) collapse of the wave function due to state measurements. Quantum walks are a technique for building quantum algorithms.
As with classical random walks, quantum walks admit formulations in both discrete time and continuous time.
Quantum walks are motivated by the widespread use of classical random walks in the design of randomized algorithms and are part of several quantum algorithms. For some oracular problems, quantum walks provide an exponential speedup over any classical algorithm. [1] [2] Quantum walks also give polynomial speedups over classical algorithms for many practical problems, such as the element distinctness problem, [3] the triangle finding problem, [4] and evaluating NAND trees. [5] The well-known Grover search algorithm can also be viewed as a quantum walk algorithm.
Quantum walks exhibit very different features from classical random walks. In particular, they do not converge to limiting distributions and due to the power of quantum interference, they may spread significantly faster or slower than their classical equivalents. There is also no randomness in quantum walks. Due to the laws of quantum mechanics, the evolution of an isolated quantum system is deterministic. This means that by using current conditions, you can exactly predict the future behaviors of the system. Randomness only occurs in quantum walks when the system is measured and classical information is gathered. Also, instead of the "coin flip" used in classical systems, quantum walks enlarge the space of the physical system to create more data. [6]
Continuous-time quantum walks arise when one replaces the continuum spatial domain in the Schrödinger equation with a discrete set. That is, instead of having a quantum particle propagate in a continuum, one restricts the set of possible position states to the vertex set of some graph which can be either finite or countably infinite. Under particular conditions, continuous-time quantum walks can provide a model for universal quantum computation. [7]
Consider the dynamics of a non-relativistic, spin-less free quantum particle with mass propagating on an infinite one-dimensional spatial domain. The particle's motion is completely described by its wave function which satisfies the one-dimensional, free particle Schrödinger equation
where and is the reduced Planck constant. Now suppose that only the spatial part of the domain is discretized, being replaced with where is the separation between the spatial sites the particle can occupy. The wave function becomes the map and the second spatial partial derivative becomes the discrete laplacian
The evolution equation for a continuous time quantum walk on is thus
where is a characteristic frequency. This construction naturally generalizes to the case that the discretized spatial domain is an arbitrary graph and the discrete laplacian is replaced by the graph Laplacian where and are the degree matrix and the adjacency matrix, respectively. Common choices of graphs that show up in the study of continuous time quantum walks are the d-dimensional lattices , cycle graphs , d-dimensional discrete tori , the d-dimensional hypercube and random graphs.
This section needs expansion. You can help by adding to it. (December 2009) |
The evolution of a quantum walk in discrete time is specified by the product of two unitary operators: (1) a "coin flip" operator and (2) a conditional shift operator, which are applied repeatedly. The following example is instructive here. [8] Imagine a particle with a spin-1/2-degree of freedom propagating on a linear array of discrete sites. If the number of such sites is countably infinite, we identify the state space with . The particle's state can then be described by a product state
consisting of an internal spin state
and a position state
where is the "coin space" and is the space of physical quantum position states. The product in this setting is the Kronecker (tensor) product. The conditional shift operator for the quantum walk on the line is given by
i.e. the particle jumps right if it has spin up and left if it has spin down. Explicitly, the conditional shift operator acts on product states according to
If we first rotate the spin with some unitary transformation and then apply , we get a non-trivial quantum motion on . A popular choice for such a transformation is the Hadamard gate , which, with respect to the standard z-component spin basis, has matrix representation
When this choice is made for the coin flip operator, the operator itself is called the "Hadamard coin" and the resulting quantum walk is called the "Hadamard walk". If the walker is initialized at the origin and in the spin-up state, a single time step of the Hadamard walk on is
Measurement of the system's state at this point would reveal an up spin at position 1 or a down spin at position −1, both with probability 1/2. Repeating the procedure would correspond to a classical simple random walk on . In order to observe non-classical motion, no measurement is performed on the state at this point (and therefore do not force a collapse of the wave function). Instead, repeat the procedure of rotating the spin with the coin flip operator and conditionally jumping with . This way, quantum correlations are preserved and different position states can interfere with one another. This gives a drastically different probability distribution than the classical random walk (Gaussian distribution) as seen in the figure to the right. Spatially one sees that the distribution is not symmetric: even though the Hadamard coin gives both up and down spin with equal probability, the distribution tends to drift to the right when the initial spin is . This asymmetry is entirely due to the fact that the Hadamard coin treats the and state asymmetrically. A symmetric probability distribution arises if the initial state is chosen to be
Consider what happens when we discretize a massive Dirac operator over one spatial dimension. In the absence of a mass term, we have left-movers and right-movers.[ clarification needed ] They can be characterized by an internal degree of freedom, "spin" or a "coin". When we turn on a mass term, this corresponds to a rotation in this internal "coin" space. A quantum walk corresponds to iterating the shift and coin operators repeatedly.
This is very much like Richard Feynman's model of an electron in 1 (one) spatial and 1 (one) time dimension. He summed up the zigzagging paths, with left-moving segments corresponding to one spin (or coin), and right-moving segments to the other. See Feynman checkerboard for more details.
The transition probability for a 1-dimensional quantum walk behaves like the Hermite functions which (1) asymptotically oscillate in the classically allowed region, (2) is approximated by the Airy function around the wall of the potential,[ clarification needed ] and (3) exponentially decay in the classically hidden region. [9]
Another approach to quantizing classical random walks is through continuous-time Markov chains. Unlike the coin-based mechanism used in discrete-time random walks, Markov chains do not rely on a coin flip to determine the direction of movement. [10] In this framework, time is treated as a continuous variable, allowing the walker to transition between adjacent vertices at any point in time. As time progresses, the probability of finding the walker at a neighboring vertex increases, while the likelihood of remaining at the current vertex decreases. The transition rate between neighboring vertices serves as the probability factor, replacing the need for a coin flip. [11]
Quantum walks on infinite graphs represent a distinctive area of study, characterized by the walk's unbounded spread over time. [12] In this context, the expected distance from the origin can be quantified by the standard deviation of the probability distribution. This measurement has been explored on both one-dimensional and two-dimensional lattices, where the standard deviation grows in direct proportion to the evolution time. Classically, the standard deviation of the random walk would be proportional to the square root of the evolution time. [11]
Atomic lattice is the leading quantum platform in terms of scalability. Coined and coinless discrete-time quantum-walk could be realized in the atomic lattice via a distance-selective spin-exchange interaction. [13] Remarkably the platform preserves the coherence over couple of hundred sites and steps in 1, 2 or 3 dimensions in the spatial space. The long-range dipolar interaction allows designing periodic boundary conditions, facilitating the QW over topological surfaces. [13]
Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.
Shor's algorithm is a quantum algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor. It is one of the few known quantum algorithms with compelling potential applications and strong evidence of superpolynomial speedup compared to best known classical (non-quantum) algorithms. On the other hand, factoring numbers of practical significance requires far more qubits than available in the near future. Another concern is that noise in quantum circuits may undermine results, requiring additional qubits for quantum error correction.
Quantum superposition is a fundamental principle of quantum mechanics that states that linear combinations of solutions to the Schrödinger equation are also solutions of the Schrödinger equation. This follows from the fact that the Schrödinger equation is a linear differential equation in time and position. More precisely, the state of a system is given by a linear combination of all the eigenfunctions of the Schrödinger equation governing that system.
Quantum decoherence is the loss of quantum coherence. Quantum decoherence has been studied to understand how quantum systems convert to systems which can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have confirmed some of the key issues. Quantum computing relies on quantum coherence and is one of the primary practical applications of the concept.
An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density.
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,
In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.
In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate is a basic quantum circuit operating on a small number of qubits. Quantum logic gates are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits.
In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.
LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed conditioned on the information received.
In physics, in the area of quantum information theory, a Greenberger–Horne–Zeilinger (GHZ) state is an entangled quantum state that involves at least three subsystems. Named for the three authors that first described this state, the GHZ state predicts outcomes from experiments that directly contradict predictions by every classical local Hidden-variable theory. The state has applications in quantum computing.
Amplitude amplification is a technique in quantum computing which generalizes the idea behind Grover's search algorithm, and gives rise to a family of quantum algorithms. It was discovered by Gilles Brassard and Peter Høyer in 1997, and independently rediscovered by Lov Grover in 1998.
A helium atom is an atom of the chemical element helium. Helium is composed of two electrons bound by the electromagnetic force to a nucleus containing two protons along with two neutrons, depending on the isotope, held together by the strong force. Unlike for hydrogen, a closed-form solution to the Schrödinger equation for the helium atom has not been found. However, various approximations, such as the Hartree–Fock method, can be used to estimate the ground state energy and wavefunction of the atom. Historically, the first such helium spectrum calculation was done by Albrecht Unsöld in 1927. Its success was considered to be one of the earliest signs of validity of Schrödinger's wave mechanics.
Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.
In quantum computing, the quantum phase estimation algorithm is a quantum algorithm to estimate the phase corresponding to an eigenvalue of a given unitary operator. Because the eigenvalues of a unitary operator always have unit modulus, they are characterized by their phase, and therefore the algorithm can be equivalently described as retrieving either the phase or the eigenvalue itself. The algorithm was initially introduced by Alexei Kitaev in 1995.
In quantum mechanics, weak measurement is a type of quantum measurement that results in an observer obtaining very little information about the system on average, but also disturbs the state very little. From Busch's theorem any quantum system is necessarily disturbed by measurement, but the amount of disturbance is described by a parameter called the measurement strength.
Many-body localization (MBL) is a dynamical phenomenon which leads to the breakdown of equilibrium statistical mechanics in isolated many-body systems. Such systems never reach local thermal equilibrium, and retain local memory of their initial conditions for infinite times. One can still define a notion of phase structure in these out-of-equilibrium systems. Strikingly, MBL can even enable new kinds of exotic orders that are disallowed in thermal equilibrium – a phenomenon that goes by the name of localization-protected quantum order (LPQO) or eigenstate order.
In quantum physics, the "monogamy" of quantum entanglement refers to the fundamental property that it cannot be freely shared between arbitrarily many parties.
In quantum computing, the variational quantum eigensolver (VQE) is a quantum algorithm for quantum chemistry, quantum simulations and optimization problems. It is a hybrid algorithm that uses both classical computers and quantum computers to find the ground state of a given physical system. Given a guess or ansatz, the quantum processor calculates the expectation value of the system with respect to an observable, often the Hamiltonian, and a classical optimizer is used to improve the guess. The algorithm is based on the variational method of quantum mechanics.