Quasithin group

Last updated

In mathematics, a quasithin group is a finite simple group that resembles a group of Lie type of rank at most 2 over a field of characteristic 2. More precisely it is a finite simple group of characteristic 2 type and width 2. Here characteristic 2 type means that its centralizers of involutions resemble those of groups of Lie type over fields of characteristic 2, and the width is roughly the maximal rank of an abelian group of odd order normalizing a non-trivial 2-subgroup of G. When G is a group of Lie type of characteristic 2 type, the width is usually the rank (the dimension of a maximal torus of the algebraic group).

Classification

The classification of quasithin groups is a crucial part of the classification of finite simple groups. The quasithin groups were classified in a 1221-page paper by MichaelAschbacher andStephen D. Smith ( 2004 , 2004b ). An earlier announcement by GeoffreyMason ( 1980 ) of the classification, on the basis of which the classification of finite simple groups was announced as finished in 1983, was premature as the unpublished manuscript ( Mason 1981 ) of his work was incomplete and contained serious gaps.

According to Aschbacher & Smith (2004b , theorem 0.1.1), the finite simple quasithin groups of even characteristic are given by

If the condition "even characteristic" is relaxed to "even type" in the sense of the revision of the classification by Daniel Gorenstein, Richard Lyons, and Ronald Solomon, then the only extra group that appears is the Janko group J1.

Related Research Articles

<span class="mw-page-title-main">Classification of finite simple groups</span> Massive theorem assigning all but 27 finite simple groups to a few infinite families

In mathematics, the classification of the finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.

<span class="mw-page-title-main">Simple group</span> Group without normal subgroups other than the trivial group and itself

In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group. This process can be repeated, and for finite groups one eventually arrives at uniquely determined simple groups, by the Jordan–Hölder theorem.

<span class="mw-page-title-main">Finite group</span> Mathematical group based upon a finite number of elements

In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups and permutation groups.

<span class="mw-page-title-main">Reductive group</span>

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.

<span class="mw-page-title-main">Rudvalis group</span>

In the area of modern algebra known as group theory, the Rudvalis groupRu is a sporadic simple group of order

In mathematics, especially in the area of algebra known as group theory, the Fitting subgroupF of a finite group G, named after Hans Fitting, is the unique largest normal nilpotent subgroup of G. Intuitively, it represents the smallest subgroup which "controls" the structure of G when G is solvable. When G is not solvable, a similar role is played by the generalized Fitting subgroupF*, which is generated by the Fitting subgroup and the components of G.

<span class="mw-page-title-main">Michael Aschbacher</span> American mathematician

Michael George Aschbacher is an American mathematician best known for his work on finite groups. He was a leading figure in the completion of the classification of finite simple groups in the 1970s and 1980s. It later turned out that the classification was incomplete, because the case of quasithin groups had not been finished. This gap was fixed by Aschbacher and Stephen D. Smith in 2004, in a pair of books comprising about 1300 pages. Aschbacher is currently the Shaler Arthur Hanisch Professor of Mathematics at the California Institute of Technology.

In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson.

<span class="mw-page-title-main">Group of Lie type</span>

In mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.

In mathematics, a Ree group is a group of Lie type over a finite field constructed by Ree from an exceptional automorphism of a Dynkin diagram that reverses the direction of the multiple bonds, generalizing the Suzuki groups found by Suzuki using a different method. They were the last of the infinite families of finite simple groups to be discovered.

Janko group J<sub>4</sub>

In the area of modern algebra known as group theory, the Janko groupJ4 is a sporadic simple group of order

In group theory, Bender's method is a method introduced by Bender (1970) for simplifying the local group theoretic analysis of the odd order theorem. Shortly afterwards he used it to simplify the Walter theorem on groups with abelian Sylow 2-subgroups Bender (1970b), and Gorenstein and Walter's classification of groups with dihedral Sylow 2-subgroups. Bender's method involves studying a maximal subgroup M containing the centralizer of an involution, and its generalized Fitting subgroup F*(M).

In group theory, the trichotomy theorem divides the finite simple groups of characteristic 2 type and rank at least 3 into three classes. It was proved by Aschbacher for rank 3 and by Gorenstein & Lyons (1983) for rank at least 4. The three classes are groups of GF(2) type, groups of "standard type" for some odd prime, and groups of uniqueness type, where Aschbacher proved that there are no simple groups.

In the mathematical classification of finite simple groups, a thin group is a finite group such that for every odd prime number p, the Sylow p-subgroups of the 2-local subgroups are cyclic. Informally, these are the groups that resemble rank 1 groups of Lie type over a finite field of characteristic 2.

In mathematical finite group theory, a block, sometimes called Aschbacher block, is a subgroup giving an obstruction to Thompson factorization and pushing up. Blocks were introduced by Michael Aschbacher.

In finite group theory, a branch of mathematics, a group is said to be of characteristic 2 type or even type or of even characteristic if it resembles a group of Lie type over a field of characteristic 2.

In mathematical finite group theory, the uniqueness case is one of the three possibilities for groups of characteristic 2 type given by the trichotomy theorem.

In mathematical finite group theory, the classical involution theorem of Aschbacher classifies simple groups with a classical involution and satisfying some other conditions, showing that they are mostly groups of Lie type over a field of odd characteristic. Berkman (2001) extended the classical involution theorem to groups of finite Morley rank.

References