RAD54L

Last updated
RAD54L
Identifiers
Aliases RAD54L , HR54, RAD54A, hHR54, hRAD54, RAD54-like (S. cerevisiae), RAD54 like (S. cerevisiae), RAD54 like
External IDs OMIM: 603615 MGI: 894697 HomoloGene: 48227 GeneCards: RAD54L
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001142548
NM_003579
NM_001370766

NM_001122958
NM_001122959
NM_009015

RefSeq (protein)

NP_001136020
NP_003570
NP_001357695

NP_001116430
NP_001116431
NP_033041

Location (UCSC) Chr 1: 46.25 – 46.28 Mb Chr 4: 115.95 – 115.98 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

DNA repair and recombination protein RAD54-like is a protein that in humans is encoded by the RAD54L gene. [5] [6]

Contents

The protein encoded by this gene belongs to the DEAD-like helicase superfamily, and shares similarity with Saccharomyces cerevisiae Rad54, a protein known to be involved in the homologous recombination and repair of DNA. This protein has been shown to play a role in homologous recombination related repair of DNA double-strand breaks. The binding of this protein to double-strand DNA induces a DNA topological change, which is thought to facilitate homologous DNA pairing, and stimulate DNA recombination. [6]

RAD54 is one of the key proteins necessary for homologous recombination and DNA repair in many organisms. Without functional RAD54, tumor development is more likely. RAD54 was initially described in the budding yeast Saccharomyces cerevisiae as being a member of the evolutionarily conserved RAD52 epistasis group, which additionally includes RAD51, RAD52, RAD55, and RAD57 factors. This group is believed to be involved in DNA recombination events and repair mechanisms, especially those involving double-stranded DNA breaks during both mitosis and meiosis. Recently a human homologue of the yeast RAD54 was discovered and termed hRAD54.

Human gene

Human RAD54, or hRAD54, is linked to chromosome 1p32. It encodes a protein, composed of 747 amino acids, that is 52% identical to its yeast counterpart. These two proteins also share many functional similarities. The RAD54 encoded product is a member of the Swi2/Snf2 protein family, a member of the Swi2/Snf2 subfamily of ATPases. These protein products have homology in seven conserved helicase motifs. Purified hRAD54 has been shown to specifically exhibit DNA-dependent ATPase and supercoiling activities. hRAD54 transcripts are expressed primarily in the testis and thymus, with lower levels being found also in the small intestines, colon, breast, and prostate. Mutants of hRAD54 are extremely sensitive to x-rays, as well as methyl methanesulfonate (MMS). These mutants are most likely defective in both the spontaneous and induced mitotic recombination processes.

Function

The interaction between RAD54 and RAD51, another member of the RAD52 epistasis group, in humans is mediated by the N-terminal domain of the hRAD54 protein. This N-terminal end interacts with both the free and bound ends of the RAD51 protein. RAD54 moves along the length of the DNA, producing positive supercoils ahead of the replication protein movement and negative supercoils trailing the complex. The interaction with RAD51 enhances the ability of RAD54 to perform this supercoiling and strained opening activity. These proteins also work together to form DNA joints, with RAD54 specifically extending the joints and stabilizing the D-loops formed. An alternative function of RAD54 may be to remove RAD51 proteins after joints formation and recombination initiation has occurred.

Inactivation and cancer susceptibility

Defects in RAD51 are known to be associated with tumor development. Normally, RAD51 interacts with both BRCA1 and BRCA2 protein products to cause tumor suppression. This leads to the assumption that other members of the RAD52 epistasis group, including RAD54, are also important in tumor development and suppression because of their homologous relationship. RAD54’s involvement as a necessary recombinational protein is supported in the finding that there are mutations of RAD54 in a small percentage of studied breast and colon carcinomas, as well as several lymphomas.

Meiosis

The frequency of spontaneous chromosome breaks during meiosis was measured in the spermatocytes of both wild type mice and Rad54/Rad54B knockout mice. [7] In the Rad54/Rad54B knockout mice, the spontaneous chromosome aberration frequency detected at metaphase 1 of meiosis was more than 10-fold higher than in the wild-type mice. This finding, and additional experimental findings, indicated that the RAD54/RAD54B proteins have a role in maintaining a stable karyotype during male meiosis. [7]

Related Research Articles

<span class="mw-page-title-main">Chromosomal crossover</span> Cellular process

Chromosomal crossover, or crossing over, is the exchange of genetic material during sexual reproduction between two homologous chromosomes' non-sister chromatids that results in recombinant chromosomes. It is one of the final phases of genetic recombination, which occurs in the pachytene stage of prophase I of meiosis during a process called synapsis. Synapsis begins before the synaptonemal complex develops and is not completed until near the end of prophase I. Crossover usually occurs when matching regions on matching chromosomes break and then reconnect to the other chromosome.

RecQ helicase is a family of helicase enzymes initially found in Escherichia coli that has been shown to be important in genome maintenance. They function through catalyzing the reaction ATP + H2O → ADP + P and thus driving the unwinding of paired DNA and translocating in the 3' to 5' direction. These enzymes can also drive the reaction NTP + H2O → NDP + P to drive the unwinding of either DNA or RNA.

<span class="mw-page-title-main">Homologous recombination</span> Genetic recombination between identical or highly similar strands of genetic material

Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids.

Mitotic recombination is a type of genetic recombination that may occur in somatic cells during their preparation for mitosis in both sexual and asexual organisms. In asexual organisms, the study of mitotic recombination is one way to understand genetic linkage because it is the only source of recombination within an individual. Additionally, mitotic recombination can result in the expression of recessive alleles in an otherwise heterozygous individual. This expression has important implications for the study of tumorigenesis and lethal recessive alleles. Mitotic homologous recombination occurs mainly between sister chromatids subsequent to replication. Inter-sister homologous recombination is ordinarily genetically silent. During mitosis the incidence of recombination between non-sister homologous chromatids is only about 1% of that between sister chromatids.

<span class="mw-page-title-main">RAD51</span>

DNA repair protein RAD51 homolog 1 is a protein encoded by the gene RAD51. The enzyme encoded by this gene is a member of the RAD51 protein family which assists in repair of DNA double strand breaks. RAD51 family members are homologous to the bacterial RecA, Archaeal RadA and yeast Rad51. The protein is highly conserved in most eukaryotes, from yeast to humans.

Chromosome segregation is the process in eukaryotes by which two sister chromatids formed as a consequence of DNA replication, or paired homologous chromosomes, separate from each other and migrate to opposite poles of the nucleus. This segregation process occurs during both mitosis and meiosis. Chromosome segregation also occurs in prokaryotes. However, in contrast to eukaryotic chromosome segregation, replication and segregation are not temporally separated. Instead segregation occurs progressively following replication.

<span class="mw-page-title-main">SMARCA2</span> Protein-coding gene in the species Homo sapiens

Probable global transcription activator SNF2L2 is a protein that in humans is encoded by the SMARCA2 gene.

<span class="mw-page-title-main">Exonuclease 1</span> Protein-coding gene in the species Homo sapiens

Exonuclease 1 is an enzyme that in humans is encoded by the EXO1 gene.

<span class="mw-page-title-main">RAD52</span> Protein-coding gene in the species Homo sapiens

RAD52 homolog , also known as RAD52, is a protein which in humans is encoded by the RAD52 gene.

<span class="mw-page-title-main">RAD51C</span> Protein-coding gene in the species Homo sapiens

RAD51 homolog C , also known as RAD51C, is a protein which in humans is encoded by the RAD51C gene.

<span class="mw-page-title-main">RAD51L3</span> Protein-coding gene in the species Homo sapiens

DNA repair protein RAD51 homolog 4 is a protein that in humans is encoded by the RAD51L3 gene.

<span class="mw-page-title-main">XRCC2</span> Protein-coding gene in the species Homo sapiens

DNA repair protein XRCC2 is a protein that in humans is encoded by the XRCC2 gene.

<span class="mw-page-title-main">MSH5</span> Protein-coding gene in the species Homo sapiens

MutS protein homolog 5 is a protein that in humans is encoded by the MSH5 gene.

<span class="mw-page-title-main">DMC1 (gene)</span> Protein-coding gene in the species Homo sapiens

Meiotic recombination protein DMC1/LIM15 homolog is a protein that in humans is encoded by the DMC1 gene.

<span class="mw-page-title-main">MSH4</span> Protein-coding gene in the species Homo sapiens

MutS protein homolog 4 is a protein that in humans is encoded by the MSH4 gene.

<span class="mw-page-title-main">SMC6</span> Protein-coding gene in the species Homo sapiens

Structural maintenance of chromosomes protein 6 is a protein that in humans is encoded by the SMC6 gene.

<span class="mw-page-title-main">RAD54B</span> Protein-coding gene in the species Homo sapiens

DNA repair and recombination protein RAD54B is a protein that in humans is encoded by the RAD54B gene.

<span class="mw-page-title-main">PALB2</span> Protein-coding gene in the species Homo sapiens

Partner and localizer of BRCA2, also known as PALB2 or FANCN, is a protein which in humans is encoded by the PALB2 gene.

<span class="mw-page-title-main">Synthesis-dependent strand annealing</span>

Synthesis-dependent strand annealing (SDSA) is a major mechanism of homology-directed repair of DNA double-strand breaks (DSBs). Although many of the features of SDSA were first suggested in 1976, the double-Holliday junction model proposed in 1983 was favored by many researchers. In 1994, studies of double-strand gap repair in Drosophila were found to be incompatible with the double-Holliday junction model, leading researchers to propose a model they called synthesis-dependent strand annealing. Subsequent studies of meiotic recombination in S. cerevisiae found that non-crossover products appear earlier than double-Holliday junctions or crossover products, challenging the previous notion that both crossover and non-crossover products are produced by double-Holliday junctions and leading the authors to propose that non-crossover products are generated through SDSA.

<span class="mw-page-title-main">Double-strand break repair model</span>

A double-strand break repair model refers to the various models of pathways that cells undertake to repair double strand-breaks (DSB). DSB repair is an important cellular process, as the accumulation of unrepaired DSB could lead to chromosomal rearrangements, tumorigenesis or even cell death. In human cells, there are two main DSB repair mechanisms: Homologous recombination (HR) and non-homologous end joining (NHEJ). HR relies on undamaged template DNA as reference to repair the DSB, resulting in the restoration of the original sequence. NHEJ modifies and ligates the damaged ends regardless of homology. In terms of DSB repair pathway choice, most mammalian cells appear to favor NHEJ rather than HR. This is because the employment of HR may lead to gene deletion or amplification in cells which contains repetitive sequences. In terms of repair models in the cell cycle, HR is only possible during the S and G2 phases, while NHEJ can occur throughout whole process. These repair pathways are all regulated by the overarching DNA damage response mechanism. Besides HR and NHEJ, there are also other repair models which exists in cells. Some are categorized under HR, such as synthesis-dependent strain annealing, break-induced replication, and single-strand annealing; while others are an entirely alternate repair model, namely, the pathway microhomology-mediated end joining (MMEJ).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000085999 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000028702 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kanaar R, Troelstra C, Swagemakers SM, Essers J, Smit B, Franssen JH, et al. (July 1996). "Human and mouse homologs of the Saccharomyces cerevisiae RAD54 DNA repair gene: evidence for functional conservation". Current Biology. 6 (7): 828–838. doi:10.1016/S0960-9822(02)00606-1. hdl: 1765/3104 . PMID   8805304. S2CID   2195913.
  6. 1 2 "Entrez Gene: RAD54L RAD54-like (S. cerevisiae)".
  7. 1 2 Russo A, Cordelli E, Salvitti T, Palumbo E, Pacchierotti F (October 2018). "Rad54/Rad54B deficiency is associated to increased chromosome breakage in mouse spermatocytes". Mutagenesis. 33 (4): 323–332. doi: 10.1093/mutage/gey027 . PMID   30204892.

Further reading