RAON

Last updated
Rare Isotope Science Project: RAON
중이온가속기건설구축사업단: 라온
Type Governmental organisation
Purpose Basic science
Headquarters Daejeon, South Korea
Location
Coordinates 36°28′43″N127°22′17″E / 36.4785°N 127.3715°E / 36.4785; 127.3715
Director
Kwon Myeun
Budget
1.4523 trillion KRW [1]
Website risp.ibs.re.kr/html/risp_en/

Related Research Articles

Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research. By tonnage, separating natural uranium into enriched uranium and depleted uranium is the largest application. In the following text, mainly uranium enrichment is considered. This process is crucial in the manufacture of uranium fuel for nuclear power plants, and is also required for the creation of uranium-based nuclear weapons. Plutonium-based weapons use plutonium produced in a nuclear reactor, which must be operated in such a way as to produce plutonium already of suitable isotopic mix or grade.

<span class="mw-page-title-main">GSI Helmholtz Centre for Heavy Ion Research</span> German research institute

The GSI Helmholtz Centre for Heavy Ion Research is a federally and state co-funded heavy ion (Schwerion) research center in the Wixhausen suburb of Darmstadt, Germany. It was founded in 1969 as the Society for Heavy Ion Research, abbreviated GSI, to conduct research on and with heavy-ion accelerators. It is the only major user research center in the State of Hesse.

<span class="mw-page-title-main">Brookhaven National Laboratory</span> United States Department of Energy national laboratory

Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment camp. Its name stems from its location within the Town of Brookhaven, approximately 60 miles east of New York City. It is managed by Stony Brook University and Battelle Memorial Institute.

<span class="mw-page-title-main">National Superconducting Cyclotron Laboratory</span> Building in Michigan, United States

The National Superconducting Cyclotron Laboratory (NSCL), located on the campus of Michigan State University was a rare isotope research facility in the United States. Established in 1963, the cyclotron laboratory has been succeeded by the Facility for Rare Isotope Beams, a linear accelerator providing beam to the same detector halls.

<span class="mw-page-title-main">TRIUMF</span> Particle physics laboratory in Canada

TRIUMF is Canada's national particle accelerator centre. It is considered Canada's premier physics laboratory, and consistently regarded as one of the world's leading subatomic physics research centres. Owned and operated by a consortium of universities, it is on the south campus of one of its founding members, the University of British Columbia in Vancouver, British Columbia, Canada. It houses the world's largest normal conducting cyclotron, a source of 520 MeV protons, which was named an IEEE Milestone in 2010. Its accelerator-focused activities involve particle physics, nuclear physics, nuclear medicine, materials science, and detector and accelerator development.

<span class="mw-page-title-main">Paul Scherrer Institute</span> Swiss federal research institute

The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like ETH Zurich and EPFL, PSI belongs to the Swiss Federal Institutes of Technology Domain of the Swiss Confederation. The PSI employs around 2,100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI's research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics.

<span class="mw-page-title-main">ISOLDE</span> Physics facility at CERN

The ISOLDE Radioactive Ion Beam Facility, is an on-line isotope separator facility located at the centre of the CERN accelerator complex on the Franco-Swiss border. Created in 1964, the ISOLDE facility started delivering radioactive ion beams (RIBs) to users in 1967. Originally located at the Synchro-Cyclotron (SC) accelerator, the facility has been upgraded several times most notably in 1992 when the whole facility was moved to be connected to CERN's ProtonSynchroton Booster (PSB). ISOLDE is currently the longest-running facility in operation at CERN, with continuous developments of the facility and its experiments keeping ISOLDE at the forefront of science with RIBs. ISOLDE benefits a wide range of physics communities with applications covering nuclear, atomic, molecular and solid-state physics, but also biophysics and astrophysics, as well as high-precision experiments looking for physics beyond the Standard Model. The facility is operated by the ISOLDE Collaboration, comprising CERN and sixteen (mostly) European countries. As of 2019, close to 1,000 experimentalists around the world are coming to ISOLDE to perform typically 50 different experiments per year.

<span class="mw-page-title-main">Variable Energy Cyclotron Centre</span>

The Variable Energy Cyclotron Centre (VECC) is a research and development unit of the Department of Atomic Energy. The VECC is located in Kolkata, India and performs research in basic and applied nuclear sciences and development of the latest nuclear particle accelerators. It has a collaboration with the European Organization for Nuclear Research. The Centre houses a 224 cm cyclotron—the first of its kind in India—which has been operational since 16 June 1977. It provides proton, deuteron, alpha particle and heavy ion beams of various energies to other institutions.

A radio-frequency quadrupole (RFQ) beam cooler is a device for particle beam cooling, especially suited for ion beams. It lowers the temperature of a particle beam by reducing its energy dispersion and emittance, effectively increasing its brightness (brilliance). The prevalent mechanism for cooling in this case is buffer-gas cooling, whereby the beam loses energy from collisions with a light, neutral and inert gas. The cooling must take place within a confining field in order to counteract the thermal diffusion that results from the ion-atom collisions.

The EURISOL project is aimed at the design – and eventual construction – of a 'next-generation' European ISOL radioactive ion beam (RIB) facility capable of extending current research in atomic and nuclear physics by providing users with a wide variety of exotic ion beams at intensities far greater than those presently available. The first phase of the project, completed in 2003, set out to determine the feasibility of the project. Phase 2, the EURISOL Design Study, is currently underway and is scheduled to last 4 years. Meant to identify the technological challenges facing the construction of the EURISOL facility, the Design Study has been divided into 12 sub tasks each focusing on a particular aspect of the facility's creation.

<span class="mw-page-title-main">Nigel Lockyer</span> Particle physicist, Fermilab director

Nigel Stuart Lockyer is a British-American experimental particle physicist. He is the current director of the Cornell Laboratory for Accelerator-based ScienceS and Education (CLASSE) as of May 1, 2023. He was the Director of the Fermi National Accelerator Laboratory (Fermilab), in Batavia, Illinois, the leading particle physics laboratory in the United States, from September 2013 to April 2022.

<span class="mw-page-title-main">Neutron research facility</span>

A neutron research facility is most commonly a big laboratory operating a large-scale neutron source that provides thermal neutrons to a suite of research instruments. The neutron source usually is a research reactor or a spallation source. In some cases, a smaller facility will provide high energy neutrons using existing neutron generator technologies.

<span class="mw-page-title-main">Facility for Rare Isotope Beams</span> Nuclear science accelerator at Michigan State University, U.S.

The Facility for Rare Isotope Beams (FRIB) is a scientific user facility for nuclear science, funded by the U.S. Department of Energy Office of Science (DOE-SC), Michigan State University (MSU), and the State of Michigan. Michigan State University contributed an additional $212 million in various ways, including the land. MSU established and operates FRIB as a user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. At FRIB, scientists research the properties of rare isotopes to advance knowledge in the areas of nuclear physics, nuclear astrophysics, fundamental interactions of nuclei, and real-world applications of rare isotopes. Construction of the FRIB conventional facilities began in spring 2014 and was completed in 2017. Technical construction started in the fall of 2014 and was completed in January 2022. The total project cost was $730M with project completion in June 2022.

<span class="mw-page-title-main">Pakistan Atomic Research Reactor</span> Pair of research nuclear reactors in Nilore, Islamabad, Pakistan

The Pakistan Atomic Research Reactor or (PARR) are two nuclear research reactors and two other experimental neutron sources located in the PINSTECH Laboratory, Nilore, Islamabad, Pakistan.

<span class="mw-page-title-main">Facility for Antiproton and Ion Research</span>

The Facility for Antiproton and Ion Research (FAIR) is an international accelerator facility under construction which will use antiprotons and ions to perform research in the fields of: nuclear, hadron and particle physics, atomic and anti-matter physics, high density plasma physics, and applications in condensed matter physics, biology and the bio-medical sciences. It is situated in Darmstadt in Germany.

<span class="mw-page-title-main">MYRRHA</span> Design project of a nuclear reactor coupled to a proton accelerator

The MYRRHA is a design project of a nuclear reactor coupled to a proton accelerator. This makes it an accelerator-driven system (ADS). MYRRHA will be a lead-bismuth cooled fast reactor with two possible configurations: sub-critical or critical.

<span class="mw-page-title-main">Synchro-Cyclotron (CERN)</span>

The Synchro-Cyclotron, or Synchrocyclotron (SC), built in 1957, was CERN’s first accelerator. It was 15.7 metres (52 ft) in circumference and provided beams for CERN's first experiments in particle and nuclear physics. It accelerated particles to energies up to 600 MeV. The foundation stone of CERN was laid at the site of the Synchrocyclotron by the first Director-General of CERN, Felix Bloch. After its remarkably long 33 years of service time, the SC was decommissioned in 1990. Nowadays it accepts visitors as an exhibition area in CERN.

<span class="mw-page-title-main">Institute for Basic Science</span> Science institute in South Korea

The Institute for Basic Science is a Korean government-funded research institute that conducts basic science research and relevant pure basic research. Comprising approximately 30 research centers with more than 60 research groups across the nation and a headquarters in Daejeon, IBS has approximately 1,800 researchers and doctoral course students. Around 30% of the researchers are from countries outside South Korea. The organization is under the Ministry of Science and ICT.

The Laboratori Nazionali di Legnaro is one of the four major research centers of the Italian National Institute for Nuclear Physics (INFN). The primary focus of research at this laboratory is in the fields of nuclear physics and nuclear astrophysics, where five accelerators are currently used. It is one of the most important facilities in Italy for research in these fields. The main future project of the laboratory is the Selective Production of Exotic Species (SPES), in which various radionuclides will be produced for research and medicinal purposes.

<span class="mw-page-title-main">Kevin Insik Hahn</span> South Korean physicist (born 1962)

Kevin Insik Hahn is a South Korean physicist who is an expert in the fields of nuclear physics and nuclear astrophysics. Since December 2019, he has been the director of the Center for Exotic Nuclear Studies at the Institute for Basic Science (IBS) in South Korea. He also holds an endowed professorship in the Department of Science Education at Ewha Womans University, where he has worked since 1999. In his research, he has worked on accelerator-based as well as non-accelerator-based experiments. His current research activities involve a number of accelerators around the world, including the RI Beam Factory (RIBF) at RIKEN, Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and the soon-to-open Rare isotope Accelerator complex for ON-line experiment (RAON). During his tenure at Ewha Womans University, he promoted STEM/STEAM education by serving for multiple years as the director of the Advanced STEAM Teacher Education Center. He also wrote several physics textbooks for high school students and undergraduate students.

References

  1. 1 2 3 4 Beyond Basic Science: Korean heavy-ion accelerator, RAON A major big-science facility of the International Science and Business Belt (PDF). Brochure (English ed.). Rare Isotope Science Project. 2016. pp. 22–23. Retrieved 8 August 2018.{{cite book}}: CS1 maint: others (link)
  2. "RISP". risp.ibs.re.kr. Retrieved 9 June 2018.
  3. www.etnews.com (14 October 2012). "한국형 중이온가속기 이름 '라온'". 대한민국 IT포털의 중심! 이티뉴스 (in Korean). Retrieved 9 June 2018.
  4. "Intro. 노벨상 향한 대장정 스타트, 중이온가속기 라온 | d라이브러리" (in Korean). Retrieved 9 June 2018.
  5. 1 2 고광본 (2 February 2021). "MB 대선공약·최대 기초과학 프로젝트 '중이온가속기' 끝없는 표류". Sedaily (in Korean). Retrieved 3 February 2021.
  6. "한국형 중이온가속기 새이름 공모전". Internet Archive WayBack Machine (in Korean). International Science and Business Belt. 13 September 2013. Archived from the original on 15 September 2013. Retrieved 26 July 2018.
  7. "Rare Isotope Science Project: What is RAON?". Institute for Basic Science. Retrieved 16 July 2018. RAON, the name of the heavy-ion accelerator, is a Korean word meaning "Happy" or "Joyful.
  8. "RAON, the name of the heavy-ion accelerator, is a native Korean word meaning "Happy" or "Joyful"". Internet Archive WayBack Machine (in Korean). International Science and Business Belt. Archived from the original on 26 July 2018. While preserving its intention, the name selected for the Grand Prize was modified slightly for easy pronunciation and international use, thus giving rise to RAON, the new name for the Korean heavy-ion accelerator.
  9. "중이온가속기건설구축사업단". ko-kr.facebook.com (in Korean). Retrieved 4 August 2018.
  10. "과학벨트 핵심연구시설 '라온 중이온가속기' 캐릭터 선보여" (in Korean). Retrieved 4 August 2018.
  11. 1 2 권, 예슬; 최, 영준 (2018). 이, 현경 (ed.). "과학동아". 과학동아 (in Korean). Vol. 390. Donga Science. pp. 94–121. ISSN   1228-3401.
  12. "Beyond Basic Science". RISP. Institute for Basic Science. 2016. Archived from the original (PDF) on 16 July 2018. Retrieved 16 July 2018.
  13. Kim, J.; Kim, D.; Kim, M.; Song, J.; Yun, C.; Kim, S.; Wan, W. (18–21 June 2012). Design study of in-flight fragment separator for rare isotope science project in Korea (PDF). 12th Heavy Ion Accelerator Technology Conference (HIAT2012). Chicago, Illinois USA. pp. 20–22. Retrieved 7 August 2018.
  14. "MOU체결 현황". RAON (in Korean). Rare Isotope Science Project. Archived from the original on 6 June 2020. Retrieved 8 August 2018.
  15. Lee, Jin-ho; Kang, Byoung-hwi; Woo, Hyung-joo; Hironobu, Ishiyama; Seo, Chang-seog; Park, Sung-jong; Kim, Jong-won; Jeong, Sun-chan; Yuon, Min-young (4–6 November 2015). "Poster Presentations (Utilization) PU-16 Development and Operation Status for ISOL Off-line Test Facility of RISP" (PDF). 19th International Conference on Accelerators and Beam Utilizations ICABU2015 November 4–6, 2015, Gyeongju HICO, Korea. 19th International Conference on Accelerators and Beam Utilizations (ICABU2015). Gyeongju, Korea. p. xv. Retrieved 12 September 2018.
  16. "The RISP of IBS-Korea University to cooperate on accelerator research and expert training". Rare isotope Accelerator complex for ON-line experiments. Institute for Basic Science. 23 April 2013. Archived from the original on 21 January 2019. Retrieved 21 January 2019.
  17. Beyond Basic Science: Korean heavy-ion accelerator, RAON A major big-science facility of the International Science and Business Belt (PDF). Brochure (English ed.). Rare Isotope Science Project. 2016. pp. 18–19. Retrieved 8 August 2018.{{cite book}}: CS1 maint: others (link)
  18. Ahn, Jung Keun; An, Dong Hyun; Baek, Kwang-yun; Baek, Seung Won; Bahng, Jung-bae; Bak, Sang-in; Chang, Dae-sik; Cheon, Byunggu; Cheoun, Myung-ki; Cho, Dong-hyun; Cho, Hee-suk; Choi, Bong Hyuk; Choi, Chang-il; Choi, Chul Jin; Choi, Eun-mi; Choi, Han-woo; Choi, Hyo-jung; Choi, Kwang-yang; Choi, Min Sik; Choi, Seonho (August 2012). "1-7". Baseline Design Summary. Rare Isotope Science Project. pp. 16–18. Retrieved 8 August 2018.
  19. 1 2 3 4 5 Lee, Jaehyung (October 2017). 중이온가속기 장치구축사업 (PDF) (Report) (in Korean). p. 2. Retrieved 2 October 2018.
  20. Kim, Jong Won. Status of the Rare Isotope Science Project in Korea (PDF). LINAC 12. Tel-Aviv, Israel. pp. 455–457. ISBN   978-3-95450-122-9 . Retrieved 2 October 2018. The project is funded and officially started in the end of 2011.