RBP3

Last updated
RBP3
Identifiers
Aliases RBP3 , D10S64, D10S65, D10S66, IRBP, RBPI, RP66, retinol binding protein 3
External IDs OMIM: 180290 MGI: 97878 HomoloGene: 9261 GeneCards: RBP3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002900

NM_015745

RefSeq (protein)

NP_002891

NP_056560

Location (UCSC) Chr 10: 47.35 – 47.36 Mb Chr 14: 33.68 – 33.69 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Retinol-binding protein 3, interstitial (RBP3), also known as interphotoreceptor retinoid-binding protein (IRBP), is a protein that in humans is encoded by the RBP3 gene. [5] RBP3 orthologs [6] have been identified in most eutherians except tenrecs and armadillos. A horizontal gene transfer from bacteria has been proposed to explain the evolution of the eye in chordates. [7]

Contents

Function

The inter-photoreceptor retinoid-binding protein is a large glycoprotein known to bind retinoids and found primarily in the interphotoreceptor matrix of the retina between the retinal pigment epithelium (RPE) and the photoreceptor cells. It is thought to transport retinoids between the RPE and the photoreceptors, a critical role in the visual process. [8] [9]

Gene

The human IRBP gene is approximately 9.5 kbp in length and consists of four exons separated by three introns. The introns are 1.6-1.9 kbp long. The gene is transcribed by photoreceptor and retinoblastoma cells into an approximately 4.3-kilobase mRNA that is translated and processed into a glycosylated protein of 135,000 Da.

Structure

The amino acid sequence of human IRBP can be divided into four contiguous homology domains with 33-38% identity, suggesting a series of gene duplication events. In the gene, the boundaries of these domains are not defined by exon-intron junctions, as might have been expected. The first three homology domains and part of the fourth are all encoded by the first large exon, which is 3,180 base pairs long. The remainder of the fourth domain is encoded in the last three exons, which are 191, 143, and approximately 740 base pairs long, respectively. [5]

Application

The rbp3 gene is commonly used in animals as a nuclear DNA phylogenetic marker. [6] The exon 1 has first been used in a pioneer study to provide evidence for monophyly of Chiroptera. [10] Then, it has been used to infer the phylogeny of placental mammal orders, [11] [12] and of the major clades of Rodentia, [13] Macroscelidea, [14] and Primates. [15] RBP3 is also useful at lower taxonomic levels, e.g., in muroid rodents [16] and Malagasy primates, [17] at the phylogeography level in Geomys and Apodemus rodents, [18] [19] and even for carnivora species identification purposes. [20]

Note that the RBP3 intron 1 has also been used to investigate the platyrrhine primates phylogenetics. [21]

Related Research Articles

<span class="mw-page-title-main">Exon</span> A region of a transcribed gene present in the final functional mRNA molecule

An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term exon refers to both the DNA sequence within a gene and to the corresponding sequence in RNA transcripts. In RNA splicing, introns are removed and exons are covalently joined to one another as part of generating the mature RNA. Just as the entire set of genes for a species constitutes the genome, the entire set of exons constitutes the exome.

An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word intron is derived from the term intragenic region, i.e., a region inside a gene. The term intron refers to both the DNA sequence within a gene and the corresponding RNA sequence in RNA transcripts. The non-intron sequences that become joined by this RNA processing to form the mature RNA are called exons.

<span class="mw-page-title-main">RNA splicing</span> Process in molecular biology

RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcript is transformed into a mature messenger RNA (mRNA). It works by removing all the introns and splicing back together exons. For nuclear-encoded genes, splicing occurs in the nucleus either during or immediately after transcription. For those eukaryotic genes that contain introns, splicing is usually needed to create an mRNA molecule that can be translated into protein. For many eukaryotic introns, splicing occurs in a series of reactions which are catalyzed by the spliceosome, a complex of small nuclear ribonucleoproteins (snRNPs). There exist self-splicing introns, that is, ribozymes that can catalyze their own excision from their parent RNA molecule. The process of transcription, splicing and translation is called gene expression, the central dogma of molecular biology.

<span class="mw-page-title-main">Alternative splicing</span> Process by which a gene can code for multiple proteins

Alternative splicing, or alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to code for multiple proteins. In this process, particular exons of a gene may be included within or excluded from the final, processed messenger RNA (mRNA) produced from that gene. This means the exons are joined in different combinations, leading to different (alternative) mRNA strands. Consequently, the proteins translated from alternatively spliced mRNAs usually contain differences in their amino acid sequence and, often, in their biological functions.

<span class="mw-page-title-main">Muroidea</span> Superfamily of rodents

The Muroidea are a large superfamily of rodents, including mice, rats, voles, hamsters, lemmings, gerbils, and many other relatives. Although the Muroidea originated in Eurasia, they occupy a vast variety of habitats on every continent except Antarctica. Some authorities have placed all members of this group into a single family, Muridae, due to difficulties in determining how the subfamilies are related to one another. Many of the families within the Muroidea superfamily have more variations between the families than between the different clades. A possible explanation for the variations in rodents is because of the location of these rodents; these changes could have been due to radiation or the overall environment they migrated to or originated in. The following taxonomy is based on recent well-supported molecular phylogenies.

Exon shuffling is a molecular mechanism for the formation of new genes. It is a process through which two or more exons from different genes can be brought together ectopically, or the same exon can be duplicated, to create a new exon-intron structure. There are different mechanisms through which exon shuffling occurs: transposon mediated exon shuffling, crossover during sexual recombination of parental genomes and illegitimate recombination.

<span class="mw-page-title-main">Growth hormone receptor</span> A protein involved in the binding of the growth hormone

Growth hormone receptor is a protein that in humans is encoded by the GHR gene. GHR orthologs have been identified in most mammals.

Vitamin A receptor, Stimulated by retinoic acid 6 or STRA6 protein was originally discovered as a transmembrane cell-surface receptor for retinol-binding protein. STRA6 is unique as it functions both as a membrane transporter and a cell surface receptor, particularly as a cytokine receptor. In fact, STRA6 may be the first of a whole new class of proteins that might be known as "cytokine signaling transporters." STRA6 is primarily known as the receptor for retinol binding protein and for its relevance in the transport of retinol to specific sites such as the eye. It does this through the removal of retinol (ROH) from the holo-Retinol Binding Protein (RBP) and transports it into the cell to be metabolized into retinoids and/or kept as a retinylester. As a receptor, after holo-RBP is bound, STRA6 activates the JAK/STAT pathway, resulting in the activation of transcription factor, STAT5. These two functions—retinol transporter and cytokine receptor—while using different pathways, are processes that depend on each other.

In evolutionary biology, the flying primate hypothesis is that megabats, a subgroup of Chiroptera, form an evolutionary sister group of primates. The hypothesis began with Carl Linnaeus in 1758, and was again advanced by J.D. Smith in 1980. It was proposed in its modern form by Australian neuroscientist Jack Pettigrew in 1986 after he discovered that the connections between the retina and the superior colliculus in the megabat Pteropus were organized in the same way found in primates, and purportedly different from all other mammals. This was followed up by a longer study published in 1989, in which this was supported by the analysis of many other brain and body characteristics. Pettigrew suggested that flying foxes, colugos, and primates were all descendants of the same group of early arboreal mammals. The megabat flight and the colugo gliding could be both seen as locomotory adaptations to a life high above the ground.

IRBP may refer to two proteins:

<span class="mw-page-title-main">Retinal G protein coupled receptor</span> Protein-coding gene in the species Homo sapiens

RPE-retinal G protein-coupled receptor also known as RGR-opsin is a protein that in humans is encoded by the RGR gene. RGR-opsin is a member of the rhodopsin-like receptor subfamily of GPCR. Like other opsins which bind retinaldehyde, it contains a conserved lysine residue in the seventh transmembrane domain. RGR-opsin comes in different isoforms produced by alternative splicing.

<span class="mw-page-title-main">ABCA4</span> Mammalian protein found in Homo sapiens

ATP-binding cassette, sub-family A (ABC1), member 4, also known as ABCA4 or ABCR, is a protein which in humans is encoded by the ABCA4 gene.

<span class="mw-page-title-main">RPE65</span> Protein-coding gene in humans

Retinal pigment epithelium-specific 65 kDa protein, also known as retinoid isomerohydrolase, is an enzyme of the vertebrate visual cycle that is encoded in humans by the RPE65 gene. RPE65 is expressed in the retinal pigment epithelium and is responsible for the conversion of all-trans-retinyl esters to 11-cis-retinol during phototransduction. 11-cis-retinol is then used in visual pigment regeneration in photoreceptor cells. RPE65 belongs to the carotenoid oxygenase family of enzymes.

<span class="mw-page-title-main">Retinaldehyde-binding protein 1</span> Protein-coding gene in the species Homo sapiens

Retinaldehyde-binding protein 1 (RLBP1) also known as cellular retinaldehyde-binding protein (CRALBP) is a 36-kD water-soluble protein that in humans is encoded by the RLBP1 gene.

<span class="mw-page-title-main">RBP1</span> Protein-coding gene in the species Homo sapiens

Retinol binding protein 1, cellular, also known as RBP1, is a protein that in humans is encoded by the RBP1 gene.

<span class="mw-page-title-main">Orthodenticle homeobox 2</span> Protein-coding gene in the species Homo sapiens

Homeobox protein OTX2 is a protein that in humans is encoded by the OTX2 gene.

<span class="mw-page-title-main">RBP2</span> Protein-coding gene in humans

Retinol-binding protein 2 (RBP2) is a protein that in humans is encoded by the RBP2 gene.

<span class="mw-page-title-main">RDH12</span> Protein-coding gene in the species Homo sapiens

Retinol dehydrogenase 12 is an enzyme that in humans is encoded by the RDH12 gene.

<span class="mw-page-title-main">Retinol-binding protein</span> Family of proteins that bind retinol

Retinol-binding proteins (RBP) are a family of proteins with diverse functions. They are carrier proteins that bind retinol. Assessment of retinol-binding protein is used to determine visceral protein mass in health-related nutritional studies.

The split gene theory is a theory of the origin of introns, long non-coding sequences in eukaryotic genes between the exons. The theory holds that the randomness of primordial DNA sequences would only permit small (< 600bp) open reading frames (ORFs), and that important intron structures and regulatory sequences are derived from stop codons. In this introns-first framework, the spliceosomal machinery and the nucleus evolved due to the necessity to join these ORFs into larger proteins, and that intronless bacterial genes are less ancestral than the split eukaryotic genes. The theory originated with Periannan Senapathy.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000265203 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000041534 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: RBP3 retinol binding protein 3, interstitial".
  6. 1 2 "OrthoMaM phylogenetic marker: RBP3 gene, exon 1".[ permanent dead link ]
  7. Kalluraya, Chinmay A.; Weitzel, Alexander J.; Tsu, Brian V.; Daugherty, Matthew D. (2023-04-18). "Bacterial origin of a key innovation in the evolution of the vertebrate eye". Proceedings of the National Academy of Sciences. 120 (16): e2214815120. doi: 10.1073/pnas.2214815120 . ISSN   0027-8424. PMC   10120077 . PMID   37036996.
  8. Pennisi E (10 Apr 2023). "An ancient gene stolen from bacteria set the stage for human sight". Science. doi:10.1126/science.adi2029 . Retrieved 11 Apr 2023.
  9. Kusakabe TG, Takimoto N, Jin M, Tsuda M (Oct 2009). "Evolution and the origin of the visual retinoid cycle in vertebrates". Philosophical Transactions B. 364 (1531): 2897–2910. doi:10.1098/rstb.2009.0043. PMC   2781855 . PMID   19720652.
  10. Stanhope MJ, Czelusniak J, Si JS, Nickerson J, Goodman M (Jun 1992). "A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly". Molecular Phylogenetics and Evolution. 1 (2): 148–60. doi:10.1016/1055-7903(92)90026-D. PMID   1342928.
  11. Stanhope MJ, Smith MR, Waddell VG, Porter CA, Shivji MS, Goodman M (Aug 1996). "Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: convincing evidence for several superordinal clades". Journal of Molecular Evolution. 43 (2): 83–92. doi:10.1007/BF02337352. PMID   8660440. S2CID   25865281.
  12. Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW, Adkins R, Amrine HM, Stanhope MJ, de Jong WW, Springer MS (Feb 2001). "Parallel adaptive radiations in two major clades of placental mammals". Nature. 409 (6820): 610–4. doi:10.1038/35054544. PMID   11214318. S2CID   4398233.
  13. Huchon D, Madsen O, Sibbald MJ, Ament K, Stanhope MJ, Catzeflis F, de Jong WW, Douzery EJ (Jul 2002). "Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes". Molecular Biology and Evolution. 19 (7): 1053–65. doi: 10.1093/oxfordjournals.molbev.a004164 . PMID   12082125.
  14. Douady CJ, Catzeflis F, Raman J, Springer MS, Stanhope MJ (Jul 2003). "The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (elephant shrews)". Proceedings of the National Academy of Sciences of the United States of America. 100 (14): 8325–30. doi: 10.1073/pnas.0832467100 . PMC   166228 . PMID   12821774.
  15. Poux C, Douzery EJ (May 2004). "Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP". American Journal of Physical Anthropology. 124 (1): 01–16. doi:10.1002/ajpa.10322. PMID   15085543.
  16. Jansa SA, Weksler M (Apr 2004). "Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences". Molecular Phylogenetics and Evolution. 31 (1): 256–76. doi:10.1016/j.ympev.2003.07.002. PMID   15019624.
  17. Horvath JE, Weisrock DW, Embry SL, Fiorentino I, Balhoff JP, Kappeler P, Wray GA, Willard HF, Yoder AD (Mar 2008). "Development and application of a phylogenomic toolkit: resolving the evolutionary history of Madagascar's lemurs". Genome Research. 18 (3): 489–99. doi:10.1101/gr.7265208. PMC   2259113 . PMID   18245770.
  18. Genoways HH, Hamilton MJ, Bell DM, Chambers RR, Bradley RD (2008). "Hybrid zones, genetic isolation, and systematics of pocket gophers (genus Geomys) in Nebraska". J. Mammal. 89 (4): 826–836. doi: 10.1644/07-mamm-a-408.1 .
  19. Tomozawa M, Suzuki H (Mar 2008). "A trend of central versus peripheral structuring in mitochondrial and nuclear gene sequences of the Japanese wood mouse, Apodemus speciosus". Zoological Science. 25 (3): 273–85. doi:10.2108/zsj.25.273. PMID   18393564. S2CID   38824060.
  20. Oliveira R, Castro D, Godinho R, Luikart G, Alves PC (June 2009). "Species identification using a small nuclear gene: application to sympatric wild carnivores from South-western Europe". Conserv. Genet. 11 (3): 1023–1032. doi:10.1007/s10592-009-9947-4. S2CID   21422211.
  21. Schneider H, Sampaio I, Harada ML, Barroso CM, Schneider MP, Czelusniak J, Goodman M (Jun 1996). "Molecular phylogeny of the New World monkeys (Platyrrhini, primates) based on two unlinked nuclear genes: IRBP intron 1 and epsilon-globin sequences". American Journal of Physical Anthropology. 100 (2): 153–79. doi:10.1002/(SICI)1096-8644(199606)100:2<153::AID-AJPA1>3.0.CO;2-Z. PMID   8771309.

Further reading