RCA clean

Last updated

The RCA clean is a standard set of wafer cleaning steps which need to be performed before high-temperature processing steps (oxidation, diffusion, CVD) of silicon wafers in semiconductor manufacturing.

Diffusion Statistical movement of molecules or atoms from a region of high concentration (or high chemical potential) to a region of low concentration (or low chemical potential)

Diffusion is the net movement of molecules or atoms from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in chemical potential of the diffusing species.

Chemical vapor deposition chemical process used in the semiconductor industry to produce thin films

Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high quality, high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.

A semiconductor material has an electrical conductivity value falling between that of a metal, like copper, gold, etc. and an insulator, such as glass. Its resistance decreases as its temperature increases, which is behaviour opposite to that of a metal. Its conducting properties may be altered in useful ways by the deliberate, controlled introduction of impurities ("doping") into the crystal structure. Where two differently-doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers which include electrons, ions and electron holes at these junctions is the basis of diodes, transistors and all modern electronics. Some examples of semiconductors are silicon, germanium, and gallium arsenide. After silicon, gallium arsenide is the second most common semiconductor and is used in laser diodes, solar cells, microwave-frequency integrated circuits and others. Silicon is a critical element for fabricating most electronic circuits.


Werner Kern developed the basic procedure in 1965 while working for RCA, the Radio Corporation of America. [1] [2] [3] It involves the following chemical processes performed in sequence:

  1. Removal of the organic contaminants (organic clean + particle clean)
  2. Removal of thin oxide layer (oxide strip, optional)
  3. Removal of ionic contamination (ionic clean)

Standard recipe

The wafers are prepared by soaking them in deionized water. If they are grossly contaminated (visible residues), they may require a preliminary cleanup in piranha solution. The wafers are thoroughly rinsed with deionized water between each step. [2]

Piranha solution, also known as piranha etch, is a mixture of sulfuric acid (H2SO4) and hydrogen peroxide (H2O2), used to clean organic residues off substrates. Because the mixture is a strong oxidizing agent, it will remove most organic matter, and it will also hydroxylate most surfaces (add OH groups), making them highly hydrophilic (water-compatible).

Ideally, the steps below are carried out by immersing the wafers in solutions prepared in fused silica or fused quartz vessels (borosilicate glassware must not be used, as its impurities leach out and cause contamination). Likewise it is recommended that the chemicals used are electronic grade (or "CMOS grade") to avoid impurities that will recontaminate the wafer. [2]

Fused quartz fused silica

Fused quartz or fused silica is glass consisting of silica in amorphous (non-crystalline) form. It differs from traditional glasses in containing no other ingredients, which are typically added to glass to lower the melt temperature. Fused silica, therefore, has high working and melting temperatures. Although the terms fused quartz and fused silica are used interchangeably, the optical and thermal properties of fused silica are superior to those of fused quartz and other types of glass due to its purity. For these reasons, it finds use in situations such as semiconductor fabrication and laboratory equipment. It transmits ultraviolet better than other glasses, so is used to make lenses and optics for the ultraviolet spectrum. The low coefficient of thermal expansion of fused quartz makes it a useful material for precision mirror substrates.

Borosilicate glass type of glass with silica and boron trioxide as the main glass-forming constituents

Borosilicate glass is a type of glass with silica and boron trioxide as the main glass-forming constituents. Borosilicate glasses are known for having very low coefficients of thermal expansion, making them resistant to thermal shock, more so than any other common glass. Such glass is less subject to thermal stress and is commonly used for the construction of reagent bottles. Borosilicate glass is sold under such trade names as Borcam, Borosil, DURAN, Suprax, Simax, BSA 60, BSC 51, Heatex, Endural, Schott, Refmex, Kimble, MG(India) and some items sold under different trade names.

First step (SC-1): organic clean + particle clean

The first step (called SC-1, where SC stands for Standard Clean) is performed with a solution of (ratios may vary) [2]

Hydrogen peroxide is a chemical compound with the formula H
. In its pure form, it is a pale blue, clear liquid, slightly more viscous than water. Hydrogen peroxide is the simplest peroxide. It is used as an oxidizer, bleaching agent and antiseptic. Concentrated hydrogen peroxide, or "high-test peroxide", is a reactive oxygen species and has been used as a propellant in rocketry. Its chemistry is dominated by the nature of its unstable peroxide bond.

at 75 or 80 °C [1] typically for 10 minutes. This base-peroxide mixture removes organic residues. Particles are also very effectively removed, even insoluble particles, since SC-1 modifies the surface and particle zeta potentials and causes them to repel. [4] This treatment results in the formation of a thin silicon dioxide layer (about 10 Angstrom) on the silicon surface, along with a certain degree of metallic contamination (notably iron) that will be removed in subsequent steps.

Second step (optional): oxide strip

The optional second step (for bare silicon wafers) is a short immersion in a 1:100 or 1:50 solution of aqueous HF (hydrofluoric acid) at 25 °C for about fifteen seconds, in order to remove the thin oxide layer and some fraction of ionic contaminants. If this step is performed without ultra high purity materials and ultra clean containers, it can lead to recontamination since the bare silicon surface is very reactive. In any case, the subsequent step (SC-2) dissolves and regrows the oxide layer. [2]

Third step (SC-2): ionic clean

The third and last step (called SC-2) is performed with a solution of (ratios may vary) [2]

at 75 or 80 °C, typically for 10 minutes. This treatment effectively removes the remaining traces of metallic (ionic) contaminants, some of which were introduced in the SC-1 cleaning step. [1] It also leaves a thin passivizing layer on the wafer surface, which protects the surface from subsequent contamination (bare exposed silicon is contaminated immediately). [2]

Fourth step: rinsing and drying

Provided the RCA clean is performed with high-purity chemicals and clean glassware, it results in a very clean wafer surface while the wafer is still submersed in water. The rinsing and drying steps must be performed correctly (e.g., with flowing water) since the surface can be easily recontaminated by organics and particulates floating on the surface of water. A variety of procedures can be used to rinse and dry the wafer effectively. [2]


The first step in the ex situ cleaning process is to ultrasonically degrease the wafer in trichloroethylene, acetone and methanol. [5]

See also

Notes and references

  1. 1 2 3 RCA Clean, materials at Colorado School of Mines Archived 2000-03-05 at the Wayback Machine
  2. 1 2 3 4 5 6 7 8 Kern, W. (1990). "The Evolution of Silicon Wafer Cleaning Technology". Journal of the Electrochemical Society. 137 (6): 1887–1892. doi:10.1149/1.2086825.
  3. W. Kern and D. A. Puotinen: RCA Rev. 31 (1970) 187.
  4. Itano, M.; Kern, F. W.; Miyashita, M.; Ohmi, T. (1993). "Particle removal from silicon wafer surface in wet cleaning process". IEEE Transactions on Semiconductor Manufacturing. 6 (3): 258. doi:10.1109/66.238174.
  5. Rudder, Ronald; Thomas, Raymond; Nemanich, Robert (1993). "Chapter 8: Remote Plasma Processing for Silicon Wafer Cleaning". In Kern, Werner. Handbook of Semiconductor Wafer Cleaning Technology. Noyes Publications. pp. 356–357. ISBN   978-0-8155-1331-5.

Related Research Articles

Semiconductor device fabrication process used to create the integrated circuits that are present in everyday electrical and electronic devices

Semiconductor device fabrication is the process used to create the integrated circuits that are present in everyday electrical and electronic devices. It is a multiple-step sequence of photolithographic and chemical processing steps during which electronic circuits are gradually created on a wafer made of pure semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.

Passivation, in physical chemistry and engineering, refers to a material becoming "passive," that is, less affected or corroded by the environment of future use. Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build from spontaneous oxidation in the air. As a technique, passivation is the use of a light coat of a protective material, such as metal oxide, to create a shell against corrosion. Passivation can occur only in certain conditions, and is used in microelectronics to enhance silicon. The technique of passivation strengthens and preserves the appearance of metallics. In electrochemical treatment of water, passivation reduces the effectiveness of the treatment by increasing the circuit resistance, and active measures are typically used to overcome this effect, the most common being polarity reversal, which results in limited rejection of the fouling layer. Other proprietary systems to avoid electrode passivation, several discussed below, are the subject of ongoing research and development.

Flux (metallurgy) type of chemicals used in metallurgy

In metallurgy, a flux is a chemical cleaning agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.

Chemical mechanical polishing/planarization is a process of smoothing surfaces with the combination of chemical and mechanical forces. It can be thought of as a hybrid of chemical etching and free abrasive polishing.

In semiconductor fabrication, a resist is a thin layer used to transfer a circuit pattern to the semiconductor substrate which it is deposited upon. A resist can be patterned via lithography to form a (sub)micrometer-scale, temporary mask that protects selected areas of the underlying substrate during subsequent processing steps. The material used to prepare said thin layer is typically a viscous solution. Resists are generally proprietary mixtures of a polymer or its precursor and other small molecules that have been specially formulated for a given lithography technology. Resists used during photolithography are called photoresists.

Vapour phase decomposition (VPD) is a method used in the semiconductor industry to improve the sensitivity of total-reflection x-ray fluorescence spectroscopy by changing the contaminant from a thin layer to a granular residue. When using granular residue the limits of detection are improved because of a more intense fluorescence signal in angles smaller than the isokinetic angle.

Microfabrication processes of fabrication of miniature structures

Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" or "semiconductor device fabrication". In the last two decades microelectromechanical systems (MEMS), microsystems, micromachines and their subfields, microfluidics/lab-on-a-chip, optical MEMS, RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale have re-used, adapted or extended microfabrication methods. Flat-panel displays and solar cells are also using similar techniques.

In chemistry, phase-boundary catalysis (PBC) is a type of heterogeneous catalytic system which facilitates the chemical reaction of a particular chemical component in an immiscible phase to react on a catalytic active site located at a phase boundary. The chemical component is soluble in one phase but insoluble in the other. The catalyst for PBC has been designed in which the external part of the zeolite is hydrophobic, internally it is usually hydrophilic, notwithstanding to polar nature of some reactants. In this sense, the medium environment in this system is close to that of an enzyme. The major difference between this system and enzyme is lattice flexibility. The lattice of zeolite is rigid, whereas the enzyme is flexible.

Parts cleaning is essential to many industrial processes, as a prelude to surface finishing or to protect sensitive components. Electroplating is particularly sensitive to part cleanliness, since molecular layers of oil can prevent adhesion of the coating. ASTM B322 is a standard guide for cleaning metals prior to electroplating. Cleaning processes include solvent cleaning, hot alkaline detergent cleaning, electrocleaning, and acid etch. The most common industrial test for cleanliness is the waterbreak test, in which the surface is thoroughly rinsed and held vertical. A quantitative measurement for this parameter is contact angle. Hydrophobic contaminants such as oils cause the water to bead and break up, allowing the water to drain rapidly. Perfectly clean metal surfaces are hydrophilic and will retain an unbroken sheet of water that does not bead up or drain off. ASTM F22 describes a version of this test. This test does not detect hydrophilic contaminants, but the electroplating process can displace these easily since the solutions are water-based. Surfactants such as soap reduce the sensitivity of the test, so these must be thoroughly rinsed off.

LOCOS, short for LOCal Oxidation of Silicon, is a microfabrication process where silicon dioxide is formed in selected areas on a silicon wafer having the Si-SiO2 interface at a lower point than the rest of the silicon surface.

Adhesive bonding describes a wafer bonding technique with applying an intermediate layer to connect substrates of different types of materials. Those connections produced can be soluble or insoluble. The commercially available adhesive can be organic or inorganic and is deposited on one or both substrate surfaces. Adhesives, especially the well-established SU-8, and benzocyclobutene (BCB), are specialized for MEMS or electronic component production.

Wafer backgrinding is a semiconductor device fabrication step during which wafer thickness is reduced to allow stacking and high-density packaging of integrated circuits (IC).

Electrodeionization is a water treatment technology that utilizes electricity, ion exchange membranes and resin to deionize water and separate dissolved ions (impurities) from water. It differs from other water purification technologies in that it is done without the use of chemical treatments and is usually a polishing treatment to reverse osmosis (RO). There are also EDI units that are often referred to as continuous electrodeionization (CEDI) since the electric current regenerates the resin mass continuously. CEDI technique can achieve very high purity, with conductivity below 0.1 µS/cm. Recently, Argonne National Laboratory developed a process called Resin-Wafer Electrodeionization (RW-EDI), which uses a unique porous resin wafer mold made from immobilized loose ion-exchange resin beads. The resin wafer material enhances mass transfer between solid and liquid phases to achieve a high purity, especially when treating impaired or brackish water.

Ultra-high-purity steam, also called clean steam, UHP steam or high purity water vapor, is used in a variety of industrial manufacturing processes that require oxidation or annealing. These processes include oxide layers grow on silicon wafers for the semiconductor industry and for passivation layers used to improve the light capture ability of crystalline photovoltaic cells. Several methods and technologies can be employed to generate ultra high purity steam, including pyrolysis, bubbling, direct liquid injection and purified steam generation. The level of purity, or the relative lack of contamination, affects the quality of the oxide layer or annealed surface. The method of delivery affects growth rate, uniformity and electrical performance. Oxidation and annealing are common steps in the manufacture of such devices as microelectronics and solar cells.

In situ chemical oxidation (ISCO), a form of advanced oxidation processes and advanced oxidation technology, is an environmental remediation technique used for soil and/or groundwater remediation to reduce the concentrations of targeted environmental contaminants to acceptable levels. ISCO is accomplished by injecting or otherwise introducing strong chemical oxidizers directly into the contaminated medium to destroy chemical contaminants in place. It can be used to remediate a variety of organic compounds, including some that are resistant to natural degradation.

Ultrapure water is water that has been purified to uncommonly stringent specifications. Ultrapure water is a commonly used term in the semiconductor industry to emphasize the fact that the water is treated to the highest levels of purity for all contaminant types, including: organic and inorganic compounds; dissolved and particulate matter; volatile and non-volatile, reactive and inert; hydrophilic and hydrophobic; and dissolved gases.

Direct bonding, or fusion bonding, describes a wafer bonding process without any additional intermediate layers. The bonding process is based on chemical bonds between two surfaces of any material possible meeting numerous requirements. These requirements are specified for the wafer surface as sufficiently clean, flat and smooth. Otherwise unbonded areas so called voids, i.e. interface bubbles, can occur.

Plasma-activated bonding is a derivative, directed to lower processing temperatures for direct bonding with hydrophilic surfaces. The main requirements for lowering temperatures of direct bonding are the use of materials melting at low temperatures and with different coefficients of thermal expansion (CTE).

Eutectic bonding

Eutectic bonding, also referred to as eutectic soldering, describes a wafer bonding technique with an intermediate metal layer that can produce a eutectic system. Those eutectic metals are alloys that transform directly from solid to liquid state, or vice versa from liquid to solid state, at a specific composition and temperature without passing a two-phase equilibrium, i.e. liquid and solid state. The fact that the eutectic temperature can be much lower than the melting temperature of the two or more pure elements can be important in eutectic bonding.