RCA clean

Last updated

The RCA clean is a standard set of wafer cleaning steps which need to be performed before high-temperature processing steps (oxidation, diffusion, CVD) of silicon wafers in semiconductor manufacturing.

Contents

Werner Kern developed the basic procedure in 1965 while working for RCA, the Radio Corporation of America. [1] [2] [3] It involves the following chemical processes performed in sequence:

  1. Removal of the organic contaminants (organic clean + particle clean)
  2. Removal of thin oxide layer (oxide strip, optional)
  3. Removal of ionic contamination (ionic clean)

Standard recipe

The wafers are prepared by soaking them in deionized water. If they are grossly contaminated (visible residues), they may require a preliminary cleanup in piranha solution. The wafers are thoroughly rinsed with deionized water between each step. [2]

Ideally, the steps below are carried out by immersing the wafers in solutions prepared in fused silica or fused quartz vessels (borosilicate glassware must not be used, as its impurities leach out and cause contamination)[ citation needed ]. Likewise it is recommended that the chemicals used be of electronic grade (or "CMOS grade") to avoid impurities that will recontaminate the wafer. [2]

First step (SC-1): organic clean + particle clean

The first step (called SC-1, where SC stands for Standard Clean) is performed with a solution of (ratios may vary) [2]

at 75 or 80 °C [1] typically for 10 minutes. This base-peroxide mixture removes organic residues. Particles are also very effectively removed, even insoluble particles, since SC-1 modifies the surface and particle zeta potentials and causes them to repel. [4] This treatment results in the formation of a thin silicon dioxide layer (about 10 Angstrom) on the silicon surface, along with a certain degree of metallic contamination (notably iron) that will be removed in subsequent steps.

Second step (optional): oxide strip

The optional second step (for bare silicon wafers) is a short immersion in a 1:100 or 1:50 solution of aqueous HF (hydrofluoric acid) at 25 °C for about fifteen seconds, in order to remove the thin oxide layer and some fraction of ionic contaminants. If this step is performed without ultra high purity materials and ultra clean containers, it can lead to recontamination since the bare silicon surface is very reactive. In any case, the subsequent step (SC-2) dissolves and regrows the oxide layer. [2]

Third step (SC-2): ionic clean

The third and last step (called SC-2) is performed with a solution of (ratios may vary) [2]

at 75 or 80 °C, typically for 10 minutes. This treatment effectively removes the remaining traces of metallic (ionic) contaminants, some of which were introduced in the SC-1 cleaning step. [1] It also leaves a thin passivating layer on the wafer surface, which protects the surface from subsequent contamination (bare exposed silicon is contaminated immediately). [2]

Fourth step: rinsing and drying

Provided the RCA clean is performed with high-purity chemicals and clean glassware, it results in a very clean wafer surface while the wafer is still submersed in water. The rinsing and drying steps must be performed correctly (e.g., with flowing water) since the surface can be easily recontaminated by organics and particulates floating on the surface of water. A variety of procedures can be used to rinse and dry the wafer effectively. [2]

Additions

The first step in the ex situ cleaning process is to ultrasonically degrease the wafer in trichloroethylene, acetone and methanol. [5]

See also

Related Research Articles

Photolithography is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer.

<span class="mw-page-title-main">Semiconductor device fabrication</span> Manufacturing process used to create integrated circuits

Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as computer processors, microcontrollers, and memory chips. It is a multiple-step photolithographic and physico-chemical process during which electronic circuits are gradually created on a wafer, typically made of pure single-crystal semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.

In physical chemistry and engineering, passivation is coating a material so that it becomes "passive", that is, less readily affected or corroded by the environment. Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build by spontaneous oxidation in the air. As a technique, passivation is the use of a light coat of a protective material, such as metal oxide, to create a shield against corrosion. Passivation of silicon is used during fabrication of microelectronic devices. Undesired passivation of electrodes, called "fouling", increases the circuit resistance so it interferes with some electrochemical applications such as electrocoagulation for wastewater treatment, amperometric chemical sensing, and electrochemical synthesis.

Chemical mechanical polishing (CMP) is a process of smoothing surfaces with the combination of chemical and mechanical forces. It can be thought of as a hybrid of chemical etching and free abrasive polishing. It is used in the semiconductor industry to polish semiconductor wafers as part of the integrated circuit manufacturing process.

Hydrogen-terminated silicon surface is a chemically passivated silicon substrate where the surface Si atoms are bonded to hydrogen. The hydrogen-terminated surfaces are hydrophobic, luminescent, and amenable to chemical modification. Hydrogen-terminated silicon is an intermediate in the growth of bulk silicon from silane: This termination is significant in the semiconductor industry due to its role in preventing oxidation and contamination of silicon surfaces, which is crucial for various applications including microelectronics and nanotechnology.

Vapour phase decomposition (VPD) is a method used in the semiconductor industry to improve the sensitivity of total-reflection x-ray fluorescence spectroscopy by changing the contaminant from a thin layer to a granular residue. When using granular residue the limits of detection are improved because of a more intense fluorescence signal in angles smaller than the isokinetic angle.

In chemistry, a phase-transfer catalyst or PTC is a catalyst that facilitates the transition of a reactant from one phase into another phase where reaction occurs. Phase-transfer catalysis is a special form of catalysis and can act through homogeneous catalysis or heterogeneous catalysis methods depending on the catalyst used. Ionic reactants are often soluble in an aqueous phase but insoluble in an organic phase in the absence of the phase-transfer catalyst. The catalyst functions like a detergent for solubilizing the salts into the organic phase. Phase-transfer catalysis refers to the acceleration of the reaction upon the addition of the phase-transfer catalyst.

<span class="mw-page-title-main">Piranha solution</span> Oxidizing acid mixture containing sulfuric acid and hydrogen peroxide

Piranha solution, also known as piranha etch, is a mixture of sulfuric acid and hydrogen peroxide. The resulting mixture is used to clean organic residues off substrates, for example silicon wafers. Because the mixture is a strong oxidizing agent, it will decompose most organic matter, and it will also hydroxylate most surfaces, making them highly hydrophilic (water-compatible). This means the solution can also easily dissolve fabric and skin, potentially causing severe damage and chemical burns in case of inadvertent contact. It is named after the piranha fish due to its tendency to rapidly dissolve and 'consume' organic materials through vigorous chemical reactions.

<span class="mw-page-title-main">Microfabrication</span> Fabrication at micrometre scales and smaller

Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" or "semiconductor device fabrication". In the last two decades, microelectromechanical systems (MEMS), microsystems, micromachines and their subfields have re-used, adapted or extended microfabrication methods. These subfields include microfluidics/lab-on-a-chip, optical MEMS, RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale. The production of flat-panel displays and solar cells also uses similar techniques.

Capacitance–voltage profiling is a technique for characterizing semiconductor materials and devices. The applied voltage is varied, and the capacitance is measured and plotted as a function of voltage. The technique uses a metal–semiconductor junction or a p–n junction or a MOSFET to create a depletion region, a region which is empty of conducting electrons and holes, but may contain ionized donors and electrically active defects or traps. The depletion region with its ionized charges inside behaves like a capacitor. By varying the voltage applied to the junction it is possible to vary the depletion width. The dependence of the depletion width upon the applied voltage provides information on the semiconductor's internal characteristics, such as its doping profile and electrically active defect densities., Measurements may be done at DC, or using both DC and a small-signal AC signal, or using a large-signal transient voltage.

<span class="mw-page-title-main">Parts cleaning</span>

Parts cleaning is a step in various industrial processes, either as preparation for surface finishing or to safeguard delicate components. One such process, electroplating, is particularly sensitive to part cleanliness, as even thin layers of oil can hinder coating adhesion.

Adhesive bonding describes a wafer bonding technique with applying an intermediate layer to connect substrates of different types of materials. Those connections produced can be soluble or insoluble. The commercially available adhesive can be organic or inorganic and is deposited on one or both substrate surfaces. Adhesives, especially the well-established SU-8, and benzocyclobutene (BCB), are specialized for MEMS or electronic component production.

Wafer backgrinding is a semiconductor device fabrication step during which wafer thickness is reduced to allow stacking and high-density packaging of integrated circuits (IC).

<span class="mw-page-title-main">Wright etch</span>

The Wright etch is a preferential etch for revealing defects in <100>- and <111>-oriented, p- and n-type silicon wafers used for making transistors, microprocessors, memories, and other components. Revealing, identifying, and remedying such defects is essential for progress along the path predicted by Moore's law. It was developed by Margaret Wright Jenkins (1936-2018) in 1976 while working in research and development at Motorola Inc. in Phoenix, AZ. It was published in 1977. This etchant reveals clearly defined oxidation-induced stacking faults, dislocations, swirls and striations with minimum surface roughness or extraneous pitting. These defects are known causes of shorts and current leakage in finished semiconductor devices should they fall across isolated junctions. A relatively low etch rate at room temperature provides etch control. The long shelf life of this etchant allows the solution to be stored in large quantities.

Ultra-high-purity steam, also called the clean steam, UHP steam or high purity water vapor, is used in a variety of industrial manufacturing processes that require oxidation or annealing. These processes include the growth of oxide layers on silicon wafers for the semiconductor industry, originally described by the Deal-Grove model, and for the formation of passivation layers used to improve the light capture ability of crystalline photovoltaic cells. Several methods and technologies can be employed to generate ultra high purity steam, including pyrolysis, bubbling, direct liquid injection, and purified steam generation. The level of purity, or the relative lack of contamination, affects the quality of the oxide layer or annealed surface. The method of delivery affects growth rate, uniformity, and electrical performance. Oxidation and annealing are common steps in the manufacture of such devices as microelectronics and solar cells.

In situ chemical oxidation (ISCO), a form of advanced oxidation process, is an environmental remediation technique used for soil and/or groundwater remediation to lower the concentrations of targeted environmental contaminants to acceptable levels. ISCO is accomplished by introducing strong chemical oxidizers into the contaminated medium to destroy chemical contaminants in place. It can be used to remediate a variety of organic compounds, including some that are resistant to natural degradation. The in situ in ISCO is just Latin for "in place", signifying that ISCO is a chemical oxidation reaction that occurs at the site of the contamination.

Ultrapure water (UPW), high-purity water or highly purified water (HPW) is water that has been purified to uncommonly stringent specifications. Ultrapure water is a term commonly used in manufacturing to emphasize the fact that the water is treated to the highest levels of purity for all contaminant types, including: organic and inorganic compounds; dissolved and particulate matter; volatile and non-volatile; reactive, and inert; hydrophilic and hydrophobic; and dissolved gases.

Direct bonding, or fusion bonding, describes a wafer bonding process without any additional intermediate layers. The bonding process is based on chemical bonds between two surfaces of any material possible meeting numerous requirements. These requirements are specified for the wafer surface as sufficiently clean, flat and smooth. Otherwise unbonded areas so called voids, i.e. interface bubbles, can occur.

Plasma-activated bonding is a derivative, directed to lower processing temperatures for direct bonding with hydrophilic surfaces. The main requirements for lowering temperatures of direct bonding are the use of materials melting at low temperatures and with different coefficients of thermal expansion (CTE).

Glossary of microelectronics manufacturing terms

References

  1. 1 2 3 RCA Clean. Materials at Colorado School of Mines Archived 2000-03-05 at the Wayback Machine
  2. 1 2 3 4 5 6 7 8 Kern, W. (1990). "The Evolution of Silicon Wafer Cleaning Technology". Journal of the Electrochemical Society. 137 (6): 1887–1892. Bibcode:1990JElS..137.1887K. doi: 10.1149/1.2086825 .
  3. W. Kern and D. A. Puotinen: RCA Rev. 31 (1970) 187.
  4. Itano, M.; Kern, F. W.; Miyashita, M.; Ohmi, T. (1993). "Particle removal from silicon wafer surface in wet cleaning process". IEEE Transactions on Semiconductor Manufacturing. 6 (3): 258. doi:10.1109/66.238174.
  5. Rudder, Ronald; Thomas, Raymond; Nemanich, Robert (1993). "Chapter 8: Remote Plasma Processing for Silicon Wafer Cleaning". In Kern, Werner (ed.). Handbook of Semiconductor Wafer Cleaning Technology. Noyes Publications. pp. 356–357. ISBN   978-0-8155-1331-5.