Radar, Anti-Aircraft

Last updated

Radar, Anti-Aircraft, or simply AA radar for short, was a classification system for British Army radars introduced in 1943 and used into the 1960s when these systems were replaced by missiles with their own integral radar systems. The classification included subcategories, Number 1 through 8, as well as the many individual systems which were assigned Marks.

Contents

Some of the Army radars pre-date the introduction of this classification system and had their own nomenclature that tended to remain in use even after they officially received new names. Notable among these are the Gun Laying and Searchlight Control categories. Additionally, equipment introduced after the classification system often have rainbow codes that they are well known by. Some were also used by the Royal Air Force and thus also had an AMES number.

Number 1

Originally known as GL Mk. I radar, AA No.1 were short range gun laying radars operating in the 1.5 m VHF band used to provide information for a anti-aircraft gun battery. The Mk. 1 version provided only range information, but these were modified to provide elevation and bearing in the Mk. I*, and then redesigned completely for the more accurate Mk. II version. The name AA No. 1 was assigned after the systems were already being replaced, and they were never widely referred to by the new name, remaining better known as GL Mk. I both during and after the war. The microwave-frequency systems that replaced them were assigned Number 3. There were three entries in the Number 1 classification:

Number 2

AA No.2 grouped together a number of otherwise unrelated radar systems formerly known as Searchlight Control, or SLC for short. These radars were associated with individual searchlights, providing their operators with enough directional information that the target aircraft could be picked up in the beam of the light. Once lit up, gunners could use their optical sighting equipment for the final aiming.

The first system, in versions Mk. 1 through 7, operated on the widely used 1.5 m band. This frequency was originally developed for airborne radar systems, using shorter wavelengths than Chain Home in order to reduce the required antenna size. For the SLC role the system was greatly simplified and built inexpensively. Over 10,000 of these early SLC radars were built in a production run spanning from June 1940 to December 1943. These Marks were all identical electronically, differing only on what they searchlight they were mounted on.

AA No. 2 also included the entirely new Mk. 8 and 9, which used a cavity magnetron to work in the 10 cm microwave band, allowing the antennas to be greatly reduced in size. These were given very low priority due to the arrival of larger microwave radars that could directly guide guns without searchlight assistance, and ongoing improvements to ground controlled interception and Airborne Interception radars that meant that searchlights were no longer needed to assist night fighters. The first examples of the Mk. 9 arrived in September 1944, with 350 delivered in total by the end of the run in the immediate post-war era.

Number 3

AA Number 3 collected a wide variety of microwave-frequency gun laying radars, mostly following the Marks of the earlier Gun Laying category. This was one of the few categories that was used extensively in the post-war era, and thus one of the few that contains entries without a former GL name.

The first entries into this group were originally known as GL Mk. III radar. There were two primary versions of this system, the Mk. III(C) from Canada, and the Mk. III(B) from Britain. These became the No.3 Mk. 1 and Mk. 2, respectively. These units had long development periods and only began widespread deployment in 1943, when they were quickly overtaken by the US SCR-584, and production was curtailed. About 1,500 of the two systems were delivered in total, with deliveries continuing to the end of the war. An advanced auto-tracking system that could be used with the Mk. 3 was developed in 1944 under the code name "Glaxo". Radars equipped with Glaxo were assigned the name AA No. 3 Mk. 4, but it was not taken into service due to the arrival of the SCR-584 which had similar features.

As the delays with both the Canadian and UK versions of the Mk. III were growing, the Army began a rush effort to introduce a greatly improved AA radar operating on well-understood electronics adapted from the 1.5 m Airborne Interception radar sets. Known as "Baby Maggie", 176 AA No.3 Mk. 3's were produced, and 50 of these were supplied to the USSR.

The SCR-584 arrived in early 1944 and entered service as the AA No.3 Mk. 5. It saw widespread service during the late stages of the war, and was especially valuable during the V-1 flying bomb campaign of 1944. Mk. 5's, along with their M10 predictors and the VT proximity fuse, were able to easily hit the V-1 and shot them down in large numbers. The name AA No.3 Mk. 8 was apparently assigned to the larger SCR-545, but it does not appear this was ever used in practice.

Further development of the Glaxo concept along with improved electronics led to the "Blue Cedar" experiments, which entered service after the war as AA No. 3 Mk. 7. This was even smaller and lighter than the SCR-584, while offering better range and accuracy. The Mk. 7 was the standard AA radar from just after WWII into the late 1950s when the UK stood down its last long-range AA guns in favour of surface-to-air missiles (SAM). Blue Cedar also served as the guidance radar for the UK's first surface-to-air missile, the Brakemine.

Number 4

AA Number 4 was a wide collection of short and medium-range systems known as tactical control radars, whose main purpose was to provide cueing support to the AA Number 3 radars, or "putting on".

The GL Mk. III(C) was hampered by the fact that the Canadian Army did not have any early warning radar systems of their own, whereas their British counterparts had a variety of systems that could be used in this role. To address this problem, the Canadian National Research Council (NRC) took some of the ASV Mk. II radar units they had been sent and used these as the basis for a simple medium-range radar, the Zone Position Indicator, or ZPI. Although the British Army already had similar units, these tended to be larger and less mobile, so the ZPI was adopted into British service as the AA No. 4 Mk. 1. The ZPI also interfered with signals from other 1.5 m units, which were used in a wide variety of roles, so the ZPIs were used primarily on the continent. Several UK-built versions followed, the Mk. 2 and Mk. 3.

Developments in the UK led to similar medium-range systems using the magnetron in place of the 1.5 m equipment. These entered service UK as the AA No. 4 Mk. 4. Modifications of this unit to provide a plan-position indicator display allowed it to be used for medium-range tactical control, producing the Mk. 5, also known as the "Gorgonzola" due to its antenna shape. The Gorgonzola was developed for the 21st Army Group and was used in Normandy.

Similar adaptations made by the NRC in Canada led to the Microwave Zone Position Indicator, or MZPI, which also found use in the UK as the No. 4 Mk. 6. The Mk. 6 proved to be the best of all of these designs, and became the standard UK medium-range radar from the end of 1945 on. A UK-built copy was known as the Mk. 7.

Some sources state an early name for the Orange Yeoman was Mark 7, but it is more likely that would have been Mk. 8 or part of Number 5 series.

Number 5

To improve the operation of the AA system as a whole, the AA No. 5 PPI radars were used at the Anti-Aircraft Operations Rooms (AAOR) to allow them to see aircraft movements over a large area and assign gun units to particular targets. This avoided the same target being attacked by two or more gun sites. The initial Mk. 1 set was a 1.5 m band unit operating on 209 MHz, while the Mk. 2 was a microwave unit on the 10 cm band.

Number 6

AA Number 6 was a special-purpose system dedicated to rangefinding for light anti-aircraft guns, namely the Bofors gun. Short-range AA is a very difficult task to automate because the aircraft appear only for moments, have high crossing speeds, and are often close to the ground so clutter is a significant issue. Number 6 was designed to make a rapid line-of-sight range measurement while pointing the gun was handled manually as before. There were three entries, Mark 1 through 3, differing primarily in detail.

Number 7

AA Number 7 was part of a combined Fire Control System (FCS) for the Bofors guns. It included a rapidly scanning tactical control radar and a separate gun laying radar in a second cabin. The operator of the scanner would select targets, causing the gun laying cabin to slew onto the right bearing. The operator would then find the target, and begin a lock-follow. From then the data from the radar was sent into a predictor in the same cabin as the gun laying radar, which in turn controlled motorized systems on the guns. There were three entries, differing in detail.

Related Research Articles

<span class="mw-page-title-main">Würzburg radar</span> Ground-based gun laying radar for the Wehrmachts Luftwaffe and German Army during World War II

The low-UHF band Würzburg radar was the primary ground-based tracking radar for the Wehrmacht's Luftwaffe and Kriegsmarine during World War II. Initial development took place before the war and the apparatus entered service in 1940. Eventually, over 4,000 Würzburgs of various models were produced. It took its name from the city of Würzburg.

<span class="mw-page-title-main">SCR-268 radar</span> U.S. Armys first radar system

The SCR-268 was the United States Army's first radar system. Introduced in 1940, it was developed to provide accurate aiming information for antiaircraft artillery and was also used for gun laying systems and directing searchlights against aircraft. The radar was widely utilized by both Army and Marine Corps air defense and early warning units during World War II. By the end of World War II the system was already considered out of date, having been replaced by the much smaller and more accurate SCR-584 microwave-based system.

<span class="mw-page-title-main">SCR-584 radar</span> Automatic tracking microwave radar.

The SCR-584 was an automatic-tracking microwave radar developed by the MIT Radiation Laboratory during World War II. It was one of the most advanced ground-based radars of its era, and became one of the primary gun laying radars used worldwide well into the 1950s. A trailer-mounted mobile version was the SCR-784.

<span class="mw-page-title-main">120 mm Gun M1</span> Anti-aircraft gun

The 120 mm Gun M1 was the United States Army's standard super-heavy anti-aircraft gun during World War II and the Korean War, complementing the smaller and more mobile M2 90 mm gun in service. Its maximum altitude was about 60,000 ft (18,000 m), which earned it the nickname stratosphere gun.

<span class="mw-page-title-main">Signal Corps Radio</span> U.S. Army radio systems

Signal Corps Radios were U.S. Army military communications components that comprised "sets". Under the Army Nomenclature System, the abbreviation SCR initially designated "Set, Complete Radio", but was later misinterpreted as "Signal Corps Radio."

<span class="mw-page-title-main">MIT Radiation Laboratory</span> Research facility in Cambridge, Massachusetts

The Radiation Laboratory, commonly called the Rad Lab, was a microwave and radar research laboratory located at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts. It was first created in October 1940 and operated until 31 December 1945 when its functions were dispersed to industry, other departments within MIT, and in 1951, the newly formed MIT Lincoln Laboratory.

Signal Corps Laboratories (SCL) was formed on June 30, 1930, as part of the U.S. Army Signal Corps at Fort Monmouth, New Jersey. Through the years, the SCL had a number of changes in name, but remained the operation providing research and development services for the Signal Corps.

Radar in World War II greatly influenced many important aspects of the conflict. This revolutionary new technology of radio-based detection and tracking was used by both the Allies and Axis powers in World War II, which had evolved independently in a number of nations during the mid 1930s. At the outbreak of war in September 1939, both Great Britain and Germany had functioning radar systems. In Great Britain, it was called RDF, Range and Direction Finding, while in Germany the name Funkmeß (radio-measuring) was used, with apparatuses called Funkmessgerät . By the time of the Battle of Britain in mid-1940, the Royal Air Force (RAF) had fully integrated RDF as part of the national air defence.

<span class="mw-page-title-main">AI Mark VIII radar</span> Type of air-to-air radar

Radar, Airborne Interception, Mark VIII, or AI Mk. VIII for short, was the first operational microwave-frequency air-to-air radar. It was used by Royal Air Force night fighters from late 1941 until the end of World War II. The basic concept, using a moving parabolic antenna to search for targets and track them accurately, remained in use by most airborne radars well into the 1980s.

<span class="mw-page-title-main">GL Mk. I radar</span>

Radar, Gun Laying, Mark I, or GL Mk. I for short, was an early radar system developed by the British Army to provide range information to associated anti-aircraft artillery. There were two upgrades to the same basic system, GL/EF and GL Mk. II, both of which added the ability to accurately determine bearing and elevation.

<span class="mw-page-title-main">Radar, Anti-Aircraft No. 3 Mk. 7</span> Mobile anti-aircraft gun

Radar, Anti-Aircraft Number 3 Mark 7, also widely referred to by its development rainbow code Blue Cedar, was a mobile anti-aircraft gun laying radar designed by British Thomson-Houston (BTH) in the mid-1940s. It was used extensively by the British Army and was exported to countries such as Holland, Switzerland, Sweden Finland and South Africa. In British service, it was used with the 5.25 inch and QF 3.7 inch AA guns, as well as the Brakemine missile.

<span class="mw-page-title-main">GL Mk. III radar</span> Family of British radar systems for artillery

Radar, Gun Laying, Mark III, or GL Mk. III for short, was a radar system used by the British Army to directly guide, or lay, anti-aircraft artillery (AA). The GL Mk. III was not a single radar, but a family of related designs that saw constant improvement during and after World War II. These were renamed shortly after their introduction in late 1942, becoming the Radar, AA, No. 3, and often paired with an early warning radar, the AA No. 4, which was also produced in several models.

<span class="mw-page-title-main">IFF Mark II</span> Aircraft identification system

IFF Mark II was the first operational identification friend or foe system. It was developed by the Royal Air Force just before the start of World War II. After a short run of prototype Mark Is, used experimentally in 1939, the Mark II began widespread deployment at the end of the Battle of Britain in late 1940. It remained in use until 1943, when it began to be replaced by the standardised IFF Mark III, which was used by all Allied aircraft until long after the war ended.

<span class="mw-page-title-main">Searchlight Control radar</span>

Searchlight Control, SLC for short but nicknamed "Elsie", was a British Army VHF-band radar system that provided aiming guidance to an attached searchlight. By combining a searchlight with a radar, the radar did not have to be particularly accurate, it only had to be good enough to get the searchlight beam on the target. Once the target was lit, normal optical instruments could be used to guide the associated anti-aircraft artillery. This allowed the radar to be much smaller, simpler and less expensive than a system with enough accuracy to directly aim the guns, like the large and complex GL Mk. II radar. In 1943 the system was officially designated Radar, AA, No. 2, although this name is rarely used.

<span class="mw-page-title-main">AMES Type 82</span> Cold War-era British medium-range 3D radar

The AMES Type 82, also widely known by its rainbow codename Orange Yeoman, was an S-band 3D radar built by Marconi and used by the Royal Air Force (RAF), initially for tactical control and later for air traffic control (ATC).

Radar, Air-to-Surface Vessel, or ASV radar for short, is a classification used by the Royal Air Force (RAF) to refer to a series of aircraft-mounted radar systems used to scan the surface of the ocean to locate ships and surfaced submarines. The first examples were developed just before the opening of World War II and they have remained a major instrument on patrol aircraft since that time. It is part of the wider surface search radar classification, which includes similar radars in ground and ship mountings.

<span class="mw-page-title-main">132nd (Mixed) Heavy Anti-Aircraft Regiment, Royal Artillery</span> Military unit

132nd (Mixed) Heavy Anti-Aircraft Regiment was an air defence unit of Britain's Royal Artillery formed during World War II. It was one of the first 'Mixed' regiments in which women of the Auxiliary Territorial Service were integrated into the unit's personnel. It defended London and South-East England against aerial attack until it deployed to Belgium in January 1945 to defend Brussels against V-1 flying bombs.

<span class="mw-page-title-main">435th (Mixed) Heavy Anti-Aircraft Battery, Royal Artillery</span> Military unit

435th (Mixed) Heavy Anti-Aircraft Battery was an air defence unit of Britain's Royal Artillery formed during World War II. It was the first 'Mixed' battery in which women of the Auxiliary Territorial Service were integrated into the unit's personnel and was the forerunner of hundreds of later batteries. It defended the United Kingdom against aerial attack until it deployed to Belgium in January 1945 to defend Brussels against V-1 flying bombs.

<span class="mw-page-title-main">SCR-720</span> Type of aircraft radar

The SCR-720 was a World War II Airborne Interception radar designed by the Radiation Laboratory (RadLab) at MIT in the United States. It was used by US Army Air Force night fighters as well as the Royal Air Force (RAF) in a slightly modified version known as Radar, Airborne Interception, Mark X, or AI Mk. X for short.

References