Rainwater management is a series of countermeasures to reduce runoff volume and improve water quality by replicating the natural hydrology and water balance of a site, with consideration of rainwater harvesting, urban flood management and rainwater runoff pollution control.
The continuous growth of human populations and the consequent growing need for drinking water is a global problem. [1] Rainwater is an important source of drinking water, and as a free source of water, considerable quantities can be collected from roof catchments and other surface areas for various uses. [2] Due to water shortages, rainfall events and flooding, attention has been given to rainwater management. Rainwater management re-conceptualizes urban rainwater, transforming it from a community risk to a resource for urban development, [3] a good rainwater management is important for the design of sanitation systems and the environment, nowadays different methods of rainwater management have been developed, [4] including reduction of impervious surfaces, separation of rainwater and sanitary sewers, collection and reuse of rainwater, and Low-impact development (LID).
Rainwater harvesting (RWH) is the process of collecting and storing rainwater rather than letting it run off. Rainwater harvesting systems are increasingly becoming an integral part of the sustainable rainwater management "toolkit" [5] and are widely used in homes, home-scale projects, schools and hospitals for a variety of purposes including watering gardens, livestock, [6] irrigation, home use with proper treatment and home heating. For households it is effective in reducing electricity and greenhouse gas emissions and providing domestic water; for urban agriculture, it is effective in reducing rainwater runoff and related issues; and for industry, it provides sustainability of facilities and low financial resource utilization.
Rainwater harvested from roof structures or other compact surfaces is discharged through drains into storage tank, processed by treatment systems and then deployed in use facilities to complete the beneficial use of rainwater. Rainwater so treated is mainly used for irrigation, washing, laundry, and in some countries it is also considered as drinking water after the necessary purification. [1]
Urban flood management has now become one of the highest priorities in urban development, Urban flooding has a major impact on both public transportation systems and supply chains and is an important topic in rainwater management [7]
The use of combined sewer systems to treat excess rainwater runoff is common in older urban areas. [8] The Combined Sewer System (CSS) collects rainwater runoff, domestic sewage and industrial wastewater into a single pipe. [9] Combined sewer overflows (CSOs) occur when untreated wastewater is discharged to surface water beyond its hydraulic capacity, when this occurs, untreated rainwater and wastewater are discharged directly into nearby streams, rivers and other water bodies. Combined sewer overflows (CSOs) contain untreated or partially treated human and industrial waste, toxic materials and debris, and rainwater. [9] a problem that is currently a key challenge for rainwater management and can lead to public health incidents. [10] Gray-green infrastructure is the key technology to solve this problem and is the core technology of the currently introduced "sponge city". The implementation of gray infrastructure, such as upgrading drainage networks, storage facilities or pumping stations with large diameter pipes, is critical to drain rainwater from urban catchments, while most green infrastructure handles the storage and infiltration of rainwater and drainage of gray infrastructure [8]
Constructed wetlands for sewer overflows treatment are currently an effective and less costly option to prevent untreated wastewater from overflowing from polluted natural water bodies, and constructed wetlands that act as retention ponds during the rainy season can collect and treat rainwater due to their natural purification function, and produce high quality water for reuse after treatment by constructed wetlands with aeration system and soils infiltration system. [4]
The conversion of Combined Sewer System (CSS) to separate sewer systems with retention ponds will not only increase rainwater drainage and reduce the potential for urban flooding, but their own retention ponds will also retain pollutants, thereby reducing or preventing unnecessary pollution of a single receiving waters.
The ratio of pervious to impervious surfaces is important in flood management. [11] [12] Building vegetated spaces, such as parks integrated with urban facilities, can increase the amount of pervious area. [13] For new and redevelopment projects, reduce the amount of impervious surfaces, such as buildings, roads, parking lots, and other structures. [14]
Low-impact development (LID) refers to systems and practices that use or mimic natural processes that result in the infiltration, evapotranspiration or use of stormwater in order to protect water quality and associated aquatic habitat. [15] Low-impact development (LID) practices provide more sustainable solutions than traditional piping and storm ponds in rainwater management. [16] The sustainability of LID practices is achieved primarily through the use of porous pavement, bioretention, green roofs, rainwater harvesting, and other rainwater management strategies. Bioretention can effectively retain large amounts of runoff, porous pavement can effectively infiltrate rainwater runoff, [17] and green roofs can retain rainwater under a variety of climatic conditions. [18] These methods create and restore green space and reduce the impact of built-up areas at the site and regional scales, promoting the natural flow of water within an ecosystem or watershed. Applied over a wide range of scales, LID can maintain or restore the hydrologic and ecological functions of a watershed. [15]
Applying rainwater management, surface runoff can be collected and stored in hand-dug farm ponds. [19] To enhance irrigation in dry conditions, earthen ridges were constructed to collect and prevent rainwater from flowing down the hillsides and slopes. Even during periods of low rainfall, enough water can be collected for crop growth. [20] Rainwater management can increase the productivity of smallholder farmers in arid environments. Productivity of rainfed agriculture is improved through supplemental irrigation, especially when combined with soil fertility management. [21]
Rainwater management as a means of multi-stage control and improvement of rainwater systems needs to go through multiple steps of analysis and design, and in the new era of Low-impact development, rainwater management has become more than just a task for engineers, rainwater management projects have tended to become Integrated project delivery (IPD) , designers need to consider rainwater management issues at a much earlier stage to avoid The development and use of software such as Rainwater+ is now helping designers to implement rainwater management at the design stage, its more intuitive GUI and simple workflow ensures that designers with little to no experience in hydrology can use Rainwater+, which will reduce later building construction conflicts to facilitate communication between all parties and improve construction quality.
The term Low-impact development is commonly used in North America and New Zealand, and was first used in the United States by Barlow et al. [22]
Water sensitive urban design (WSUD) is a concept widely accepted and partially acted on throughout Australia's federal and state governments. [23]
IUWM derives from the broader term, Integrated Water Management, which involves the integrated management of all parts of the water cycle within a watershed. [24]
SUDS established in a similar but separate design manual that includes Scotland and Northern Ireland as well as England and Wales, [25] SUDS consists of a range of techniques and technologies based on the concept of replicating the natural, pre-development drainage of the site as closely as possible, culminating in a management system. [26]
Best management practices are structural, vegetative or managerial practices used to treat, prevent or reduce water pollution. Structural BMPs. Extended Detention Ponds.
Sanitation refers to public health conditions related to clean drinking water and treatment and disposal of human excreta and sewage. Preventing human contact with feces is part of sanitation, as is hand washing with soap. Sanitation systems aim to protect human health by providing a clean environment that will stop the transmission of disease, especially through the fecal–oral route. For example, diarrhea, a main cause of malnutrition and stunted growth in children, can be reduced through adequate sanitation. There are many other diseases which are easily transmitted in communities that have low levels of sanitation, such as ascariasis, cholera, hepatitis, polio, schistosomiasis, and trachoma, to name just a few.
Stormwater, also written storm water, is water that originates from precipitation (storm), including heavy rain and meltwater from hail and snow. Stormwater can soak into the soil (infiltrate) and become groundwater, be stored on depressed land surface in ponds and puddles, evaporate back into the atmosphere, or contribute to surface runoff. Most runoff is conveyed directly as surface water to nearby streams, rivers or other large water bodies without treatment.
Water pollution is the contamination of water bodies, with a negative impact on their uses. It is usually a result of human activities. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources. These are sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution may affect either surface water or groundwater. This form of pollution can lead to many problems. One is the degradation of aquatic ecosystems. Another is spreading water-borne diseases when people use polluted water for drinking or irrigation. Water pollution also reduces the ecosystem services such as drinking water provided by the water resource.
A storm drain, storm sewer, surface water drain/sewer, or stormwater drain is infrastructure designed to drain excess rain and ground water from impervious surfaces such as paved streets, car parks, parking lots, footpaths, sidewalks, and roofs. Storm drains vary in design from small residential dry wells to large municipal systems.
Water conservation aims to sustainably manage the natural resource of fresh water, protect the hydrosphere, and meet current and future human demand. Water conservation makes it possible to avoid water scarcity. It covers all the policies, strategies and activities to reach these aims. Population, household size and growth and affluence all affect how much water is used.
A blue roof is a roof of a building that is designed explicitly to provide initial temporary water storage and then gradual release of stored water, typically rainfall. Blue roofs are constructed on flat or low sloped roofs in urban communities where flooding is a risk due to a lack of permeable surfaces for water to infiltrate, or seep back into the ground.
Rainwater harvesting (RWH) is the collection and storage of rain, rather than allowing it to run off. Rainwater is collected from a roof-like surface and redirected to a tank, cistern, deep pit, aquifer, or a reservoir with percolation, so that it seeps down and restores the ground water. Rainwater harvesting differs from stormwater harvesting as the runoff is typically collected from roofs and other area surfaces for storage and subsequent reuse. Its uses include watering gardens, livestock, irrigation, domestic use with proper treatment, and domestic heating. The harvested water can also be committed to longer-term storage or groundwater recharge.
A combined sewer is a type of gravity sewer with a system of pipes, tunnels, pump stations etc. to transport sewage and urban runoff together to a sewage treatment plant or disposal site. This means that during rain events, the sewage gets diluted, resulting in higher flowrates at the treatment site. Uncontaminated stormwater simply dilutes sewage, but runoff may dissolve or suspend virtually anything it contacts on roofs, streets, and storage yards. As rainfall travels over roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease. Combined sewers may also receive dry weather drainage from landscape irrigation, construction dewatering, and washing buildings and sidewalks.
The United States Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) is a dynamic rainfall–runoff–subsurface runoff simulation model used for single-event to long-term (continuous) simulation of the surface/subsurface hydrology quantity and quality from primarily urban/suburban areas.
Rain gardens, also called bioretention facilities, are one of a variety of practices designed to increase rain runoff reabsorption by the soil. They can also be used to treat polluted stormwater runoff. Rain gardens are designed landscape sites that reduce the flow rate, total quantity, and pollutant load of runoff from impervious urban areas like roofs, driveways, walkways, parking lots, and compacted lawn areas. Rain gardens rely on plants and natural or engineered soil medium to retain stormwater and increase the lag time of infiltration, while remediating and filtering pollutants carried by urban runoff. Rain gardens provide a method to reuse and optimize any rain that falls, reducing or avoiding the need for additional irrigation. A benefit of planting rain gardens is the consequential decrease in ambient air and water temperature, a mitigation that is especially effective in urban areas containing an abundance of impervious surfaces that absorb heat in a phenomenon known as the heat-island effect.
First flush is the initial surface runoff of a rainstorm. During this phase, water pollution entering storm drains in areas with high proportions of impervious surfaces is typically more concentrated compared to the remainder of the storm. Consequently, these high concentrations of urban runoff result in high levels of pollutants discharged from storm sewers to surface waters.
Surface runoff is the unconfined flow of water over the ground surface, in contrast to channel runoff. It occurs when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Furthermore, runoff can occur either through natural or human-made processes.
Sustainable drainage systems are a collection of water management practices that aim to align modern drainage systems with natural water processes and are part of a larger green infrastructure strategy. SuDS efforts make urban drainage systems more compatible with components of the natural water cycle such as storm surge overflows, soil percolation, and bio-filtration. These efforts hope to mitigate the effect human development has had or may have on the natural water cycle, particularly surface runoff and water pollution trends.
Green infrastructure or blue-green infrastructure refers to a network that provides the “ingredients” for solving urban and climatic challenges by building with nature. The main components of this approach include stormwater management, climate adaptation, the reduction of heat stress, increasing biodiversity, food production, better air quality, sustainable energy production, clean water, and healthy soils, as well as more anthropocentric functions, such as increased quality of life through recreation and the provision of shade and shelter in and around towns and cities. Green infrastructure also serves to provide an ecological framework for social, economic, and environmental health of the surroundings. More recently scholars and activists have also called for green infrastructure that promotes social inclusion and equity rather than reinforcing pre-existing structures of unequal access to nature-based services.
Urban runoff is surface runoff of rainwater, landscape irrigation, and car washing created by urbanization. Impervious surfaces are constructed during land development. During rain, storms, and other precipitation events, these surfaces, along with rooftops, carry polluted stormwater to storm drains, instead of allowing the water to percolate through soil. This causes lowering of the water table and flooding since the amount of water that remains on the surface is greater. Most municipal storm sewer systems discharge untreated stormwater to streams, rivers, and bays. This excess water can also make its way into people's properties through basement backups and seepage through building wall and floors.
Water resources are natural resources of water that are potentially useful for humans, for example as a source of drinking water supply or irrigation water. These resources can be either freshwater from natural sources, or water produced artificially from other sources, such as from reclaimed water (wastewater) or desalinated water (seawater). 97% of the water on Earth is salt water and only three percent is fresh water; slightly over two-thirds of this is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air. Natural sources of fresh water include surface water, under river flow, groundwater and frozen water. People use water resources for agricultural, industrial and household activities.
Water-sensitive urban design (WSUD) is a land planning and engineering design approach which integrates the urban water cycle, including stormwater, groundwater, and wastewater management and water supply, into urban design to minimise environmental degradation and improve aesthetic and recreational appeal. WSUD is a term used in the Middle East and Australia and is similar to low-impact development (LID), a term used in the United States; and Sustainable Drainage System (SuDS), a term used in the United Kingdom.
Low-impact development (LID) is a term used in Canada and the United States to describe a land planning and engineering design approach to manage stormwater runoff as part of green infrastructure. LID emphasizes conservation and use of on-site natural features to protect water quality. This approach implements engineered small-scale hydrologic controls to replicate the pre-development hydrologic regime of watersheds through infiltrating, filtering, storing, evaporating, and detaining runoff close to its source. Green infrastructure investments are one approach that often yields multiple benefits and builds city resilience.
A runoff footprint is the total surface runoff that a site produces over the course of a year. According to the United States Environmental Protection Agency (EPA) stormwater is "rainwater and melted snow that runs off streets, lawns, and other sites". Urbanized areas with high concentrations of impervious surfaces like buildings, roads, and driveways produce large volumes of runoff which can lead to flooding, sewer overflows, and poor water quality. Since soil in urban areas can be compacted and have a low infiltration rate, the surface runoff estimated in a runoff footprint is not just from impervious surfaces, but also pervious areas including yards. The total runoff is a measure of the site’s contribution to stormwater issues in an area, especially in urban areas with sewer overflows. Completing a runoff footprint for a site allows a property owner to understand what areas on his or her site are producing the most runoff and what scenarios of stormwater green solutions like rain barrels and rain gardens are most effective in mitigating this runoff and its costs to the community.
Urban flooding is the inundation of land or property in cities or other built environment, caused by rainfall or coastal storm surges overwhelming the capacity of drainage systems, such as storm sewers. Urban flooding can occur regardless of whether or not affected communities are located within designated floodplains or near any body of water. It is triggered for example by an overflow of rivers and lakes, flash flooding or snowmelt. During the flood, stormwater or water released from damaged water mains may accumulate on property and in public rights-of-way. It can seep through building walls and floors, or backup into buildings through sewer pipes, cellars, toilets and sinks.