Ralstonia pseudosolanacearum

Last updated

Ralstonia pseudosolanacearum
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Pseudomonadota
Class: Betaproteobacteria
Order: Burkholderiales
Family: Burkholderiaceae
Genus: Ralstonia
Species:
R. pseudosolanacearum
Binomial name
Ralstonia pseudosolanacearum
Safni et al. 2014

Ralstonia pseudosolanacearum is a soil-borne bacterium. It is a vascular phytopathogen that infects host plants through the root system causing wilting disease that causes loss in a wide range of crops. [1] R. pseudosolanacearum is Gram negative and was originally identified as Ralstonia solanacearum, however, in 2014 Safni et al. proposed a taxonomic revision of the Ralstonia solanacearum species complex to reclassify phylotype strains, including R. pseudosolanacearum (R. solanacearum Phylotype I and III). [2]

Contents

R. pseudosolanacearum has been reported in a wide variety of crops including ornamental roses (Rosa sp.), tomato (Solanum lycopersicum), sweet pepper (Capsicumannum) and eggplant (Solanum melongena). [3] Recent studies have found significant differences in disease severity influenced by higher temperatures (28°C) indicating temperature may be a virulence factor upon host colonization. The same study also reported wound inoculation resulted in higher disease severity regardless of temperatures tested (20°C -vs- 28°C) in addition to potential implications of latent infections. [3]

Genetics (Strain Tg03)

Methods of detection

Diagnostic procedures using conventional PCR identification have been established due to the detrimental effects this bacterial pathogen can have. Plants infected by phylotype I have been shown to exhibit wilt, necrosis of the stem and visible internal vascular browning. Due to the severity of bacterial wilt in plants, methods of detecting R. pseudosolanacearum concentrations within drain water have been developed. [5]

Virulence studies

Studies have found that light plays an important role to the colonization of Ralstonia pseudosolanacearum in tomato plants. [1]

Related Research Articles

<span class="mw-page-title-main">Fusarium wilt</span> Fungal plant disease

Fusarium wilt is a common vascular wilt fungal disease, exhibiting symptoms similar to Verticillium wilt. This disease has been investigated extensively since the early years of this century. The pathogen that causes Fusarium wilt is Fusarium oxysporum. The species is further divided into formae speciales based on host plant.

<i>Dickeya dadantii</i> Disease-causing Gram Negative Bacillus

Dickeya dadantii is a gram-negative bacillus that belongs to the family Pectobacteriaceae. It was formerly known as Erwinia chrysanthemi but was reassigned as Dickeya dadantii in 2005. Members of this family are facultative anaerobes, able to ferment sugars to lactic acid, have nitrate reductase, but lack oxidases. Even though many clinical pathogens are part of the order Enterobacterales, most members of this family are plant pathogens. D. dadantii is a motile, nonsporing, straight rod-shaped cell with rounded ends, much like the other members of the genus, Dickeya. Cells range in size from 0.8 to 3.2 μm by 0.5 to 0.8 μm and are surrounded by numerous flagella (peritrichous).

Bacillus amyloliquefaciens is a species of bacterium in the genus Bacillus that is the source of the BamHI restriction enzyme. It also synthesizes a natural antibiotic protein barnase, a widely studied ribonuclease that forms a famously tight complex with its intracellular inhibitor barstar, and plantazolicin, an antibiotic with selective activity against Bacillus anthracis.

<span class="mw-page-title-main">Verticillium wilt</span> Fungal disease of flowering plants

Verticillium wilt is a wilt disease affecting over 350 species of eudicot plants. It is caused by six species of Verticillium fungi: V. dahliae, V. albo-atrum, V. longisporum, V. nubilum, V. theobromae and V. tricorpus. Many economically important plants are susceptible including cotton, tomatoes, potatoes, oilseed rape, eggplants, peppers and ornamentals, as well as others in natural vegetation communities. Many eudicot species and cultivars are resistant to the disease and all monocots, gymnosperms and ferns are immune.

<i>Ralstonia</i> Genus of bacteria

Ralstonia is a genus of bacteria, previously included in the genus Pseudomonas. It is named after the American bacteriologist Ericka Ralston. Ericka Ralston was born Ericka Barrett in 1944 in Saratoga, California, and died in 2015 in Sebastopol, California. While in graduate school at the University of California at Berkeley, she identified 20 strains of Pseudomonas which formed a phenotypical homologous group, and named them Pseudomonas pickettii, after M.J. Pickett in the Department of Bacteriology at the University of California at Los Angeles, from whom she had received the strains. Later, P. pickettii was transferred to the new genus Ralstonia, along with several other species. She continued her research into bacterial pathogenesis under the name of Ericka Barrett while a professor of microbiology at the University of California at Davis from 1977 until her retirement in 1996.

<i>Ralstonia solanacearum</i> Disease bacteria of tomato family, others

Ralstonia solanacearum is an aerobic non-spore-forming, Gram-negative, plant pathogenic bacterium. R. solanacearum is soil-borne and motile with a polar flagellar tuft. It colonises the xylem, causing bacterial wilt in a very wide range of potential host plants. It is known as Granville wilt when it occurs in tobacco. Bacterial wilts of tomato, pepper, eggplant, and Irish potato caused by R. solanacearum were among the first diseases that Erwin Frink Smith proved to be caused by a bacterial pathogen. Because of its devastating lethality, R. solanacearum is now one of the more intensively studied phytopathogenic bacteria, and bacterial wilt of tomato is a model system for investigating mechanisms of pathogenesis. Ralstonia was until recently classified as Pseudomonas, with similarity in most aspects, except that it does not produce fluorescent pigment like Pseudomonas. The genomes from different strains vary from 5.5 Mb up to 6 Mb, roughly being 3.5 Mb of a chromosome and 2 Mb of a megaplasmid. While the strain GMI1000 was one of the first phytopathogenic bacteria to have its genome completed, the strain UY031 was the first R. solanacearum to have its methylome reported. Within the R. solanacearum species complex, the four major monophyletic clusters of strains are termed phylotypes, that are geographically distinct: phylotypes I-IV are found in Asia, the Americas, Africa, and Oceania, respectively.

<i>Xanthomonas</i> Genus of bacteria

Xanthomonas is a genus of bacteria, many of which cause plant diseases. There are at least 27 plant associated Xanthomonas spp., that all together infect at least 400 plant species. Different species typically have specific host and/or tissue range and colonization strategies.

Ralstonia syzygii is a species of bacteria in the family Burkholderiaceae. This bacterium is the plant pathogen responsible for Sumatra disease that affects the cloves (Syzygium) in Indonesia. It is transmitted by Hemiptera insects of the spittle group.

Ralstonia pickettii is a Gram-negative, rod-shaped, soil bacterium.

<i>Clavibacter michiganensis</i> Species of bacterium

Clavibacter michiganensis is an aerobic non-sporulating Gram-positive plant pathogenic actinomycete of the genus Clavibacter. Clavibacter michiganensis has several subspecies. Clavibacter michiganensis subsp. michiganensis causes substantial economic losses worldwide by damaging tomatoes and potatoes.

Curtobacterium flaccumfaciens is a Gram-positive bacterium that causes disease on a variety of plants. Gram-positive bacteria characteristics include small irregular rods, lateral flagella, the ability to persist in aerobic environments, and cells containing catalase. In the interest of studying pathogenicity in plants, the species Curtobacterium flaccumfaciens is broken down further into pathovars, which help to better describe the pathogen.

<i>Verticillium dahliae</i> Species of fungus

Verticillium dahliae is a fungal plant pathogen. It causes verticillium wilt in many plant species, causing leaves to curl and discolor. It may cause death in some plants. Over 400 plant species are affected by Verticillium complex.

<span class="mw-page-title-main">Bacterial wilt</span> Species of bacterium

Bacterial wilt is a complex of diseases that occur in plants such as Cucurbitaceae and Solanaceae and are caused by the pathogens Erwinia tracheiphila, a gram-negative bacterium, or Curtobacterium flaccumfaciens pv. flaccumfaciens, a gram-positive bacterium. Cucumber and muskmelon plants are most susceptible, but squash, pumpkins, and gourds may also become infected.

Cupriavidus metallidurans is a non-spore-forming, Gram-negative bacterium which is adapted to survive several forms of heavy metal stress.

<i>Massilia</i> (bacterium) Genus of bacteria

The genus Massilia belongs to the family Oxalobacteriaceae, and describes a group of gram-negative, motile, rod-shaped cells. They may contain either peritrichous or polar flagella. This genus was first described in 1998, after the type species, Massilia timonae, was isolated from the blood of an immunocompromised patient. The genus was named after the old Greek and Roman name for the city of Marseille, France, where the organism was first isolated. The Massilia genus is a diverse group that resides in many different environments, has many heterotrophic means of gathering energy, and is commonly found in association with plants.

<span class="mw-page-title-main">Wilt disease</span> Group of plant diseases

A wilt disease is any number of diseases that affect the vascular system of plants. Attacks by fungi, bacteria, and nematodes can cause rapid killing of plants, large tree branches or even entire trees.

<i>Liberibacter</i> Species of bacterium

Liberibacter is a genus of Gram-negative bacteria in the Rhizobiaceae family. Detection of the liberibacteria is based on PCR amplification of their 16S rRNA gene with specific primers. Members of the genus are plant pathogens mostly transmitted by psyllids. The genus was originally spelled Liberobacter.

<span class="mw-page-title-main">Beet vascular necrosis</span> Bacterial disease in beet plants

Beet vascular necrosis and rot is a soft rot disease caused by the bacterium Pectobacterium carotovorum subsp. betavasculorum, which has also been known as Pectobacterium betavasculorum and Erwinia carotovora subsp. betavasculorum. It was classified in the genus Erwinia until genetic evidence suggested that it belongs to its own group; however, the name Erwinia is still in use. As such, the disease is sometimes called Erwinia rot today. It is a very destructive disease that has been reported across the United States as well as in Egypt. Symptoms include wilting and black streaks on the leaves and petioles. It is usually not fatal to the plant, but in severe cases the beets will become hollowed and unmarketable. The bacteria is a generalist species which rots beets and other plants by secreting digestive enzymes that break down the cell wall and parenchyma tissues. The bacteria thrive in warm and wet conditions, but cannot survive long in fallow soil. However, it is able to persist for long periods of time in the rhizosphere of weeds and non-host crops. While it is difficult to eradicate, there are cultural practices that can be used to control the spread of the disease, such as avoiding injury to the plants and reducing or eliminating application of nitrogen fertilizer.

Rathayibacter toxicus is a phytopathogenic bacterium known for causing annual ryegrass toxicity (ARGT) commonly found in South and Western Australia.

Transcription Activator-Like Effector-Likes (TALE-likes) are a group of bacterial DNA binding proteins named for the first and still best-studied group, the TALEs of Xanthomonas bacteria. TALEs are important factors in the plant diseases caused by Xanthomonas bacteria, but are known primarily for their role in biotechnology as programmable DNA binding proteins, particularly in the context of TALE nucleases. TALE-likes have additionally been found in many strains of the Ralstonia solanacearum bacterial species complex, in Paraburkholderia rhizoxinica strain HKI 454, and in two unknown marine bacteria. Whether or not all these proteins form a single phylogenetic grouping is as yet unclear.

References

  1. 1 2 Tano, Josefina; Ripa, María Belén; Tondo, María Laura; Carrau, Analía; Petrocelli, Silvana; Rodriguez, María Victoria; Ferreira, Virginia; Siri, María Inés; Piskulic, Laura; Orellano, Elena Graciela (2021-07-15). "Light modulates important physiological features of Ralstonia pseudosolanacearum during the colonization of tomato plants". Scientific Reports. 11 (1): 14531. Bibcode:2021NatSR..1114531T. doi:10.1038/s41598-021-93871-9. ISSN   2045-2322. PMC   8282871 . PMID   34267245.
  2. Safni, Irda; Cleenwerck, Ilse; De Vos, Paul; Fegan, Mark; Sly, Lindsay; Kappler, UlrikeYR 2014 (2014). "Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstoniapseudosolanacearum sp. nov". International Journal of Systematic and Evolutionary Microbiology. 64 (Pt_9): 3087–3103. doi: 10.1099/ijs.0.066712-0 . ISSN   1466-5034. PMID   24944341.
  3. 1 2 Tjou-Tam-Sin, Napoleon N. A.; van de Bilt, Jeroen L. J.; Westenberg, Marcel; Gorkink-Smits, Peggy P. M. A.; Landman, N. Marco; Bergsma-Vlami, Maria (2017). "Assessing the Pathogenic Ability of Ralstonia pseudosolanacearum (Ralstonia solanacearum Phylotype I) from Ornamental Rosa spp. Plants". Frontiers in Plant Science. 8: 1895. doi: 10.3389/fpls.2017.01895 . ISSN   1664-462X. PMC   5673649 . PMID   29163615.
  4. "Ralstonia pseudosolanacearum (ID 70182) - Genome - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2021-10-06.
  5. Sedighian, N.; Mendes, O.; Poleij, L.; Bonants, P.; Wolf, J. van der (2020). "Detection of Ralstonia pseudosolanacearum in drain water based on concentration, enrichment and the use of a duplex TaqMan PCR test". EPPO Bulletin. 50 (2): 340–349. doi: 10.1111/epp.12675 . ISSN   1365-2338. S2CID   225404163.