Random phase approximation

Last updated
Bubble diagrams, which result in the RPA when summed up. Solid lines stand for interacting or non-interacting Green's functions, dashed lines for two-particle interactions. Random phase approximation ring diagrams.png
Bubble diagrams, which result in the RPA when summed up. Solid lines stand for interacting or non-interacting Green's functions, dashed lines for two-particle interactions.

The random phase approximation (RPA) is an approximation method in condensed matter physics and in nuclear physics. It was first introduced by David Bohm and David Pines as an important result in a series of seminal papers of 1952 and 1953. [1] [2] [3] For decades physicists had been trying to incorporate the effect of microscopic quantum mechanical interactions between electrons in the theory of matter. Bohm and Pines' RPA accounts for the weak screened Coulomb interaction and is commonly used for describing the dynamic linear electronic response of electron systems. It was further developed to the relativistic form (RRPA) by solving the Dirac equation. [4] [5]

Contents

In the RPA, electrons are assumed to respond only to the total electric potential V(r) which is the sum of the external perturbing potential Vext(r) and a screening potential Vsc(r). The external perturbing potential is assumed to oscillate at a single frequency ω, so that the model yields via a self-consistent field (SCF) method [6] a dynamic dielectric function denoted by εRPA(k, ω).

The contribution to the dielectric function from the total electric potential is assumed to average out, so that only the potential at wave vector k contributes. This is what is meant by the random phase approximation. The resulting dielectric function, also called the Lindhard dielectric function, [7] [8] correctly predicts a number of properties of the electron gas, including plasmons. [9]

The RPA was criticized in the late 1950s for overcounting the degrees of freedom and the call for justification led to intense work among theoretical physicists. In a seminal paper Murray Gell-Mann and Keith Brueckner showed that the RPA can be derived from a summation of leading-order chain Feynman diagrams in a dense electron gas. [10]

The consistency in these results became an important justification and motivated a very strong growth in theoretical physics in the late 50s and 60s.

Applications

Ground state of an interacting bosonic system

The RPA vacuum for a bosonic system can be expressed in terms of non-correlated bosonic vacuum and original boson excitations

where Z is a symmetric matrix with and

The normalization can be calculated by

where is the singular value decomposition of .

the connection between new and old excitations is given by

.

Related Research Articles

In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons. Due to the larger relative mass of a nucleus compared to an electron, the coordinates of the nuclei in a system are approximated as fixed, while the coordinates of the electrons are dynamic. The approach is named after Max Born and his 23-year-old graduate student J. Robert Oppenheimer, the latter of whom proposed it in 1927 during a period of intense ferment in the development of quantum mechanics.

In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry. There are several notations, such as or , , or .

<span class="mw-page-title-main">Helmholtz free energy</span> Thermodynamic potential

In thermodynamics, the Helmholtz free energy is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium.

In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state that has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle. The quantum harmonic oscillator arise in the quantum theory of a wide range of physical systems. For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well. The coherent state describes a state in a system for which the ground-state wavepacket is displaced from the origin of the system. This state can be related to classical solutions by a particle oscillating with an amplitude equivalent to the displacement.

In physics, an operator is a function over a space of physical states onto another space of physical states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.

In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa.

In quantum mechanics, a Slater determinant is an expression that describes the wave function of a multi-fermionic system. It satisfies anti-symmetry requirements, and consequently the Pauli principle, by changing sign upon exchange of two electrons. Only a small subset of all possible fermionic wave functions can be written as a single Slater determinant, but those form an important and useful subset because of their simplicity.

<span class="mw-page-title-main">Stark effect</span> Spectral line splitting in electrical field

The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due to the presence of an external electric field. It is the electric-field analogue of the Zeeman effect, where a spectral line is split into several components due to the presence of the magnetic field. Although initially coined for the static case, it is also used in the wider context to describe the effect of time-dependent electric fields. In particular, the Stark effect is responsible for the pressure broadening of spectral lines by charged particles in plasmas. For most spectral lines, the Stark effect is either linear or quadratic with a high accuracy.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

One of the guiding principles in modern chemical dynamics and spectroscopy is that the motion of the nuclei in a molecule is slow compared to that of its electrons. This is justified by the large disparity between the mass of an electron, and the typical mass of a nucleus and leads to the Born–Oppenheimer approximation and the idea that the structure and dynamics of a chemical species are largely determined by nuclear motion on potential energy surfaces.

The Franz–Keldysh effect is a change in optical absorption by a semiconductor when an electric field is applied. The effect is named after the German physicist Walter Franz and Russian physicist Leonid Keldysh.

A quasiprobability distribution is a mathematical object similar to a probability distribution but which relaxes some of Kolmogorov's axioms of probability theory. Quasiprobabilities share several of general features with ordinary probabilities, such as, crucially, the ability to yield expectation values with respect to the weights of the distribution. However, they can violate the σ-additivity axiom: integrating over them does not necessarily yield probabilities of mutually exclusive states. Indeed, quasiprobability distributions also have regions of negative probability density, counterintuitively, contradicting the first axiom. Quasiprobability distributions arise naturally in the study of quantum mechanics when treated in phase space formulation, commonly used in quantum optics, time-frequency analysis, and elsewhere.

<i>t</i>-<i>J</i> model

In solid-state physics, the t-J model is a model first derived in 1977 from the Hubbard model by Józef Spałek to explain antiferromagnetic properties of the Mott insulators and taking into account experimental results about the strength of electron-electron repulsion in this materials. The model consider the materials as a lattice with atoms in the knots (sites) and just one or two external electrons moving among them, like in the basic Hubbard model. That difference is in supposing electrons being strongly-correlated, that means electrons are very sensible to reciprocal coulombic repulsion, and so are more constrained to avoid occupying lattice's sites already occupied by another electron. In the basic Hubbard model, the repulsion, indicated with U, can be small and also null, and electrons are freer to jump from one site to another. In the t-J model, instead of U, there is the parameter J, function of the ratio t/U, so the name.

In his historic paper entitled "The Quantum Theory of Optical Coherence," Roy J. Glauber set a solid foundation for the quantum electronics/quantum optics enterprise. The experimental development of the optical maser and later laser at that time had made the classical concept of optical coherence inadequate. Glauber started from the quantum theory of light detection by considering the process of photoionization in which a photodetector is triggered by an ionizing absorption of a photon. In the quantum theory of radiation, the electric field operator in the Coulomb gauge may be written as the sum of positive and negative frequency parts

<span class="mw-page-title-main">Helium atom</span> Atom of helium

A helium atom is an atom of the chemical element helium. Helium is composed of two electrons bound by the electromagnetic force to a nucleus containing two protons along with two neutrons, depending on the isotope, held together by the strong force. Unlike for hydrogen, a closed-form solution to the Schrödinger equation for the helium atom has not been found. However, various approximations, such as the Hartree–Fock method, can be used to estimate the ground state energy and wavefunction of the atom. Historically, the first such helium spectrum calculation was done by Albrecht Unsöld in 1927. Its success was considered to be one of the earliest signs of validity of Schrödinger's wave mechanics.

The semiconductor luminescence equations (SLEs) describe luminescence of semiconductors resulting from spontaneous recombination of electronic excitations, producing a flux of spontaneously emitted light. This description established the first step toward semiconductor quantum optics because the SLEs simultaneously includes the quantized light–matter interaction and the Coulomb-interaction coupling among electronic excitations within a semiconductor. The SLEs are one of the most accurate methods to describe light emission in semiconductors and they are suited for a systematic modeling of semiconductor emission ranging from excitonic luminescence to lasers.

The cluster-expansion approach is a technique in quantum mechanics that systematically truncates the BBGKY hierarchy problem that arises when quantum dynamics of interacting systems is solved. This method is well suited for producing a closed set of numerically computable equations that can be applied to analyze a great variety of many-body and/or quantum-optical problems. For example, it is widely applied in semiconductor quantum optics and it can be applied to generalize the semiconductor Bloch equations and semiconductor luminescence equations.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

The Peierls substitution method, named after the original work by Rudolf Peierls is a widely employed approximation for describing tightly-bound electrons in the presence of a slowly varying magnetic vector potential.

<span class="mw-page-title-main">Perturbed angular correlation</span>

The perturbed γ-γ angular correlation, PAC for short or PAC-Spectroscopy, is a method of nuclear solid-state physics with which magnetic and electric fields in crystal structures can be measured. In doing so, electrical field gradients and the Larmor frequency in magnetic fields as well as dynamic effects are determined. With this very sensitive method, which requires only about 10–1000 billion atoms of a radioactive isotope per measurement, material properties in the local structure, phase transitions, magnetism and diffusion can be investigated. The PAC method is related to nuclear magnetic resonance and the Mössbauer effect, but shows no signal attenuation at very high temperatures. Today only the time-differential perturbed angular correlation (TDPAC) is used.

References

  1. Bohm, David; Pines, David (1 May 1951). "A Collective Description of Electron Interactions. I. Magnetic Interactions". Physical Review. American Physical Society (APS). 82 (5): 625–634. Bibcode:1951PhRv...82..625B. doi:10.1103/physrev.82.625. ISSN   0031-899X.
  2. Pines, David; Bohm, David (15 January 1952). "A Collective Description of Electron Interactions: II. CollectivevsIndividual Particle Aspects of the Interactions". Physical Review. American Physical Society (APS). 85 (2): 338–353. Bibcode:1952PhRv...85..338P. doi:10.1103/physrev.85.338. ISSN   0031-899X.
  3. Bohm, David; Pines, David (1 October 1953). "A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas". Physical Review. American Physical Society (APS). 92 (3): 609–625. Bibcode:1953PhRv...92..609B. doi:10.1103/physrev.92.609. ISSN   0031-899X.
  4. Deshmukh, Pranawa C.; Manson, Steven T. (September 2022). "Photoionization of Atomic Systems Using the Random-Phase Approximation Including Relativistic Interactions". Atoms. 10 (3): 71. Bibcode:2022Atoms..10...71D. doi: 10.3390/atoms10030071 . ISSN   2218-2004.
  5. Johnson, W R; Lin, C D; Cheng, K T; Lee, C M (1980-01-01). "Relativistic Random-Phase Approximation". Physica Scripta. 21 (3–4): 409–422. Bibcode:1980PhyS...21..409J. doi:10.1088/0031-8949/21/3-4/029. ISSN   0031-8949. S2CID   94058089.
  6. Ehrenreich, H.; Cohen, M. H. (15 August 1959). "Self-Consistent Field Approach to the Many-Electron Problem". Physical Review. American Physical Society (APS). 115 (4): 786–790. Bibcode:1959PhRv..115..786E. doi:10.1103/physrev.115.786. ISSN   0031-899X.
  7. J. Lindhard (1954). "On the Properties of a Gas of Charged Particles" (PDF). Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser. 28 (8).
  8. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, Toronto, 1976)
  9. G. D. Mahan, Many-Particle Physics, 2nd ed. (Plenum Press, New York, 1990)
  10. Gell-Mann, Murray; Brueckner, Keith A. (15 April 1957). "Correlation Energy of an Electron Gas at High Density" (PDF). Physical Review. American Physical Society (APS). 106 (2): 364–368. Bibcode:1957PhRv..106..364G. doi:10.1103/physrev.106.364. ISSN   0031-899X. S2CID   120701027.