In condensed matter physics, Lindhard theory [1] is a method of calculating the effects of electric field screening by electrons in a solid. It is based on quantum mechanics (first-order perturbation theory) and the random phase approximation. It is named after Danish physicist Jens Lindhard, who first developed the theory in 1954. [2] [3] [4]
Thomas–Fermi screening and the plasma oscillations can be derived as a special case of the more general Lindhard formula. In particular, Thomas–Fermi screening is the limit of the Lindhard formula when the wavevector (the reciprocal of the length-scale of interest) is much smaller than the Fermi wavevector, i.e. the long-distance limit. [1] The Lorentz–Drude expression for the plasma oscillations are recovered in the dynamic case (long wavelengths, finite frequency).
This article uses cgs-Gaussian units.
The Lindhard formula for the longitudinal dielectric function is given by
Here, is a positive infinitesimal constant, is and is the carrier distribution function which is the Fermi–Dirac distribution function for electrons in thermodynamic equilibrium. However this Lindhard formula is valid also for nonequilibrium distribution functions. It can be obtained by first-order perturbation theory and the random phase approximation (RPA).
To understand the Lindhard formula, consider some limiting cases in 2 and 3 dimensions. The 1-dimensional case is also considered in other ways.
In the long wavelength limit (), Lindhard function reduces to
where is the three-dimensional plasma frequency (in SI units, replace the factor by .) For two-dimensional systems,
This result recovers the plasma oscillations from the classical dielectric function from Drude model and from quantum mechanical free electron model.
For the denominator of the Lindhard formula, we get
and for the numerator of the Lindhard formula, we get
Inserting these into the Lindhard formula and taking the limit, we obtain
where we used and .
First, consider the long wavelength limit ().
For the denominator of the Lindhard formula,
and for the numerator,
Inserting these into the Lindhard formula and taking the limit of , we obtain
where we used , and .
Consider the static limit ().
The Lindhard formula becomes
Inserting the above equalities for the denominator and numerator, we obtain
Assuming a thermal equilibrium Fermi–Dirac carrier distribution, we get
here, we used and .
Therefore,
Here, is the 3D screening wave number (3D inverse screening length) defined as
.
Then, the 3D statically screened Coulomb potential is given by
And the inverse Fourier transformation of this result gives
known as the Yukawa potential. Note that in this Fourier transformation, which is basically a sum over all, we used the expression for small for every value of which is not correct.
For a degenerated Fermi gas (T=0), the Fermi energy is given by
So the density is
At T=0, , so .
Inserting this into the above 3D screening wave number equation, we obtain
. |
This result recovers the 3D wave number from Thomas–Fermi screening.
For reference, Debye–Hückel screening describes the non-degenerate limit case. The result is , known as the 3D Debye–Hückel screening wave number.
In two dimensions, the screening wave number is
Note that this result is independent of n.
Consider the static limit (). The Lindhard formula becomes
Inserting the above equalities for the denominator and numerator, we obtain
Assuming a thermal equilibrium Fermi–Dirac carrier distribution, we get
Therefore,
Then, the 2D statically screened Coulomb potential is given by.
It is known that the chemical potential of the 2-dimensional Fermi gas is given by
and .
This time, consider some generalized case for lowering the dimension. The lower the dimension is, the weaker the screening effect. In lower dimension, some of the field lines pass through the barrier material wherein the screening has no effect. For the 1-dimensional case, we can guess that the screening affects only the field lines which are very close to the wire axis.
In real experiment, we should also take the 3D bulk screening effect into account even though we deal with 1D case like the single filament. The Thomas–Fermi screening has been applied to an electron gas confined to a filament and a coaxial cylinder. [5] For a K2Pt(CN)4Cl0.32·2.6H20 filament, it was found that the potential within the region between the filament and cylinder varies as and its effective screening length is about 10 times that of metallic platinum. [5]
In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
A Fermi gas is an idealized model, an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer spin. These statistics determine the energy distribution of fermions in a Fermi gas in thermal equilibrium, and is characterized by their number density, temperature, and the set of available energy states. The model is named after the Italian physicist Enrico Fermi.
In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.
In quantum physics, Fermi's golden rule is a formula that describes the transition rate from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a weak perturbation. This transition rate is effectively independent of time and is proportional to the strength of the coupling between the initial and final states of the system as well as the density of states. It is also applicable when the final state is discrete, i.e. it is not part of a continuum, if there is some decoherence in the process, like relaxation or collision of the atoms, or like noise in the perturbation, in which case the density of states is replaced by the reciprocal of the decoherence bandwidth.
In condensed matter physics, the Fermi surface is the surface in reciprocal space which separates occupied from unoccupied electron states at zero temperature. The shape of the Fermi surface is derived from the periodicity and symmetry of the crystalline lattice and from the occupation of electronic energy bands. The existence of a Fermi surface is a direct consequence of the Pauli exclusion principle, which allows a maximum of one electron per quantum state. The study of the Fermi surfaces of materials is called fermiology.
In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N), where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(N).
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.
The Franz–Keldysh effect is a change in optical absorption by a semiconductor when an electric field is applied. The effect is named after the German physicist Walter Franz and Russian physicist Leonid Keldysh.
The Gross–Pitaevskii equation describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model.
In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-½ particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. In its linearized form it is known as Lévy-Leblond equation.
Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their photoabsorption by detecting in the intensity of Auger electrons as a function of the incident photon energy. Surface sensitivity is achieved by the interpretation of data depending on the intensity of the Auger electrons instead of looking at the relative absorption of the X-rays as in the parent method, EXAFS.
An LC circuit can be quantized using the same methods as for the quantum harmonic oscillator. An LC circuit is a variety of resonant circuit, and consists of an inductor, represented by the letter L, and a capacitor, represented by the letter C. When connected together, an electric current can alternate between them at the circuit's resonant frequency:
The quantization of the electromagnetic field means that an electromagnetic field consists of discrete energy parcels called photons. Photons are massless particles of definite energy, definite momentum, and definite spin.
Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.
Thomas–Fermi screening is a theoretical approach to calculate the effects of electric field screening by electrons in a solid. It is a special case of the more general Lindhard theory; in particular, Thomas–Fermi screening is the limit of the Lindhard formula when the wavevector is much smaller than the Fermi wavevector, i.e. the long-distance limit. It is named after Llewellyn Thomas and Enrico Fermi.
In solid state physics the electronic specific heat, sometimes called the electron heat capacity, is the specific heat of an electron gas. Heat is transported by phonons and by free electrons in solids. For pure metals, however, the electronic contributions dominate in the thermal conductivity. In impure metals, the electron mean free path is reduced by collisions with impurities, and the phonon contribution may be comparable with the electronic contribution.