Randy Buckner

Last updated

Randy Buckner
Born (1970-06-15) June 15, 1970 (age 53)
Alma mater Washington University in St. Louis
Known for default network, functional neuroimaging, cerebellum, memory
Awards Metlife Foundation Award (2010)
Scientific career
Fields Psychology, Neuroscience
Institutions Harvard University, Massachusetts General Hospital
Doctoral advisor Steven Petersen

Randy L. Buckner (born June 15, 1970) is an American neuroscientist and psychologist whose research focuses on understanding how large-scale brain circuits support mental function and how dysfunction arises in illness.

Contents

Buckner is a Professor of Psychology and Neuroscience at Harvard University. [1] He is affiliated with the Center for Brain Science [2] and is Director of the Psychiatric Neuroimaging Research Division [3] at the Massachusetts General Hospital. He is also faculty of the Athinoula A. Martinos Center for Biomedical Imaging.

In 2016, Science Magazine ranked Buckner among the top 10 most influential brain scientists of the modern era based on the Allen Institute's analysis of neuroscience publications. [4]

Early life

Buckner received his B.A. from Washington University in St. Louis in 1991 and his M.A. and Ph.D. from Washington University School of Medicine in 1993 and 1995. His Ph.D thesis from the Program in Neuroscience focused on episodic memory retrieval under the guidance of Steven Petersen and Marcus Raichle. During his graduate training, he was also heavily influenced by Endel Tulving. [5] He trained as a post-doctoral fellow under Bruce Rosen at Massachusetts General Hospital where he worked with Anders Dale to develop event-related functional neuroimaging approaches to study cognition. He then returned to Washington University in St. Louis as Assistant Professor of Psychology and Neurobiology in 1997.

Research Activities

Buckner has made a number of contributions including (1) description of the brain's default network and its importance to Alzheimer's disease, [6] (2) characterization of human memory systems, (3) characterization of the organization of the human cerebellum, and (4) development of event-related functional MRI.

His recent research is centered around exploring human brain network organization and studying the genetic basis of individual differences in brain organization, and neurodegenerative and neuropsychiatric disorders. [7]

His research group helped propose the "tethering hypothesis" - the hypothesis that as the human brain increased in size, the newer areas of the cortex started to wire up with each other to form the "association cortices". [8]

Open Data Sharing

Buckner has long been a proponent of open data sharing and development of neuroinformatics tools. With Daniel Marcus, his laboratory openly released the neuroinformatics data sharing platform XNAT in 2005. [9] Open data sharing projects include OASIS, [10] FC1000, [11] Human Connectome Project, [12] and GSP. [13]

Selected publications

Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory. J Neurosci: 7709-17.

Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cognit Sci, 11: 49-57.

Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: Anatomy, function, and relevance to disease. Ann New York Acad Sci, 1124: 1-38.

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophys, 106: 1125-65.

Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophys, 106: 2322-45.

Buckner RL (2012) The serendipitous discovery of the brain’s default network. NeuroImage, 62: 1137-45.

Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80: 807-15.

Related Research Articles

<span class="mw-page-title-main">Entorhinal cortex</span> Area of the temporal lobe of the brain

The entorhinal cortex (EC) is an area of the brain's allocortex, located in the medial temporal lobe, whose functions include being a widespread network hub for memory, navigation, and the perception of time. The EC is the main interface between the hippocampus and neocortex. The EC-hippocampus system plays an important role in declarative (autobiographical/episodic/semantic) memories and in particular spatial memories including memory formation, memory consolidation, and memory optimization in sleep. The EC is also responsible for the pre-processing (familiarity) of the input signals in the reflex nictitating membrane response of classical trace conditioning; the association of impulses from the eye and the ear occurs in the entorhinal cortex.

Brain mapping is a set of neuroscience techniques predicated on the mapping of (biological) quantities or properties onto spatial representations of the brain resulting in maps.

<span class="mw-page-title-main">Posterior cingulate cortex</span> Caudal part of the cingulate cortex of the brain

The posterior cingulate cortex (PCC) is the caudal part of the cingulate cortex, located posterior to the anterior cingulate cortex. This is the upper part of the "limbic lobe". The cingulate cortex is made up of an area around the midline of the brain. Surrounding areas include the retrosplenial cortex and the precuneus.

<span class="mw-page-title-main">International Neuroinformatics Coordinating Facility</span>

The International Neuroinformatics Coordinating Facility is an international non-profit organization with the mission to develop, evaluate, and endorse standards and best practices that embrace the principles of Open, FAIR, and Citable neuroscience. INCF also provides training on how standards and best practices facilitate reproducibility and enables the publishing of the entirety of research output, including data and code. INCF was established in 2005 by recommendations of the Global Science Forum working group of the OECD. The INCF is hosted by the Karolinska Institutet in Stockholm, Sweden. The INCF network comprises institutions, organizations, companies, and individuals active in neuroinformatics, neuroscience, data science, technology, and science policy and publishing. The Network is organized in governing bodies and working groups which coordinate various categories of global neuroinformatics activities that guide and oversee the development and endorsement of standards and best practices, as well as provide training on how standards and best practices facilitate reproducibility and enables the publishing of the entirety of research output, including data and code. The current Directors are Mathew Abrams and Helena Ledmyr, and the Governing Board Chair is Maryann Martone

<span class="mw-page-title-main">Dorsal attention network</span> Large-scale brain network involved in voluntary orienting of attention

The dorsal attention network (DAN), also known anatomically as the dorsal frontoparietal network (D-FPN), is a large-scale brain network of the human brain that is primarily composed of the intraparietal sulcus (IPS) and frontal eye fields (FEF). It is named and most known for its role in voluntary orienting of visuospatial attention.

<span class="mw-page-title-main">Connectome</span> Comprehensive map of neural connections in the brain

A connectome is a comprehensive map of neural connections in the brain, and may be thought of as its "wiring diagram". An organism's nervous system is made up of neurons which communicate through synapses. A connectome is constructed by tracing the neuron in a nervous system and mapping where neurons are connected through synapses.

Connectomics is the production and study of connectomes: comprehensive maps of connections within an organism's nervous system. More generally, it can be thought of as the study of neuronal wiring diagrams with a focus on how structural connectivity, individual synapses, cellular morphology, and cellular ultrastructure contribute to the make up of a network. The nervous system is a network made of billions of connections and these connections are responsible for our thoughts, emotions, actions, memories, function and dysfunction. Therefore, the study of connectomics aims to advance our understanding of mental health and cognition by understanding how cells in the nervous system are connected and communicate. Because these structures are extremely complex, methods within this field use a high-throughput application of functional and structural neural imaging, most commonly magnetic resonance imaging (MRI), electron microscopy, and histological techniques in order to increase the speed, efficiency, and resolution of these nervous system maps. To date, tens of large scale datasets have been collected spanning the nervous system including the various areas of cortex, cerebellum, the retina, the peripheral nervous system and neuromuscular junctions.

<span class="mw-page-title-main">Default mode network</span> Large-scale brain network active when not focusing on an external task

In neuroscience, the default mode network (DMN), also known as the default network, default state network, or anatomically the medial frontoparietal network (M-FPN), is a large-scale brain network primarily composed of the dorsal medial prefrontal cortex, posterior cingulate cortex, precuneus and angular gyrus. It is best known for being active when a person is not focused on the outside world and the brain is at wakeful rest, such as during daydreaming and mind-wandering. It can also be active during detailed thoughts related to external task performance. Other times that the DMN is active include when the individual is thinking about others, thinking about themselves, remembering the past, and planning for the future.

The Human Connectome Project (HCP) is a five-year project sponsored by sixteen components of the National Institutes of Health, split between two consortia of research institutions. The project was launched in July 2009 as the first of three Grand Challenges of the NIH's Blueprint for Neuroscience Research. On September 15, 2010, the NIH announced that it would award two grants: $30 million over five years to a consortium led by Washington University in St. Louis and the University of Minnesota, with strong contributions from University of Oxford (FMRIB) and $8.5 million over three years to a consortium led by Harvard University, Massachusetts General Hospital and the University of California Los Angeles.

<span class="mw-page-title-main">Resting state fMRI</span> Type of functional magnetic resonance imaging

Resting state fMRI is a method of functional magnetic resonance imaging (fMRI) that is used in brain mapping to evaluate regional interactions that occur in a resting or task-negative state, when an explicit task is not being performed. A number of resting-state brain networks have been identified, one of which is the default mode network. These brain networks are observed through changes in blood flow in the brain which creates what is referred to as a blood-oxygen-level dependent (BOLD) signal that can be measured using fMRI.

The following outline is provided as an overview of and topical guide to brain mapping:

Large-scale brain networks are collections of widespread brain regions showing functional connectivity by statistical analysis of the fMRI BOLD signal or other recording methods such as EEG, PET and MEG. An emerging paradigm in neuroscience is that cognitive tasks are performed not by individual brain regions working in isolation but by networks consisting of several discrete brain regions that are said to be "functionally connected". Functional connectivity networks may be found using algorithms such as cluster analysis, spatial independent component analysis (ICA), seed based, and others. Synchronized brain regions may also be identified using long-range synchronization of the EEG, MEG, or other dynamic brain signals.

<span class="mw-page-title-main">Russell Poldrack</span>

Russell "Russ" Alan Poldrack is an American psychologist and neuroscientist. He is a professor of psychology at Stanford University, associate director of Stanford Data Science, member of the Stanford Neuroscience Institute and director of the Stanford Center for Reproducible Neuroscience and the SDS Center for Open and Reproducible Science.

In psychology, associative memory is defined as the ability to learn and remember the relationship between unrelated items. This would include, for example, remembering the name of someone or the aroma of a particular perfume. This type of memory deals specifically with the relationship between these different objects or concepts. A normal associative memory task involves testing participants on their recall of pairs of unrelated items, such as face-name pairs. Associative memory is a declarative memory structure and episodically based.

<span class="mw-page-title-main">Salience network</span> Large-scale brain network involved in detecting and attending to relevant stimuli

The salience network (SN), also known anatomically as the midcingulo-insular network (M-CIN) or ventral attention network, is a large scale network of the human brain that is primarily composed of the anterior insula (AI) and dorsal anterior cingulate cortex (dACC). It is involved in detecting and filtering salient stimuli, as well as in recruiting relevant functional networks. Together with its interconnected brain networks, the SN contributes to a variety of complex functions, including communication, social behavior, and self-awareness through the integration of sensory, emotional, and cognitive information.

Social cognitive neuroscience is the scientific study of the biological processes underpinning social cognition. Specifically, it uses the tools of neuroscience to study "the mental mechanisms that create, frame, regulate, and respond to our experience of the social world". Social cognitive neuroscience uses the epistemological foundations of cognitive neuroscience, and is closely related to social neuroscience. Social cognitive neuroscience employs human neuroimaging, typically using functional magnetic resonance imaging (fMRI). Human brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct-current stimulation are also used. In nonhuman animals, direct electrophysiological recordings and electrical stimulation of single cells and neuronal populations are utilized for investigating lower-level social cognitive processes.

David C. Van Essen is an American neuroscientist specializing in neurobiology and studies the structure, function, development, connectivity and evolution of the cerebral cortex of humans and nonhuman relatives. After over two decades of teaching at the Washington University in St. Louis School of Medicine, he currently serves as an Alumni Endowed Professor of Neuroscience and maintains an active laboratory. Van Essen has held numerous positions, including Editor-in-Chief of the Journal of Neuroscience, Secretary of the Society for Neuroscience, and the President of the Society for Neuroscience from 2006 to 2007. Additionally, Van Essen has received numerous awards for his efforts in education and science, including the Krieg Cortical Discoverer Award from the Cajal Club in 2002, the Peter Raven Lifetime Achievement Award from St. Louis Academy of Science in 2007, and the Second Century Award in 2015 and the Distinguished Educator Award in 2017, both from Washington University School of Medicine.

Network neuroscience is an approach to understanding the structure and function of the human brain through an approach of network science, through the paradigm of graph theory. A network is a connection of many brain regions that interact with each other to give rise to a particular function. Network Neuroscience is a broad field that studies the brain in an integrative way by recording, analyzing, and mapping the brain in various ways. The field studies the brain at multiple scales of analysis to ultimately explain brain systems, behavior, and dysfunction of behavior in psychiatric and neurological diseases. Network neuroscience provides an important theoretical base for understanding neurobiological systems at multiple scales of analysis.

References

  1. Buckner Laboratory
  2. Harvard Center for Brain Science
  3. MGH Psychiatric Neuroimaging Research Division
  4. Science Magazine Ranking of Influential Brain Scientists
  5. Buckner RL and Tulving E (1995) Neuroimaging studies of memory: Theory and recent PET results. In Boller, F., and Grafman, J. (Eds) Handbook of Neuropsychology Volume 10, pp. 439-466. Amsterdam: Elsevier
  6. Alzforum
  7. Research Themes
  8. Was the Human Brain Unleashed?
  9. eXtensible Neuroimaging Archive Toolkit
  10. Open Access Series of Imaging Studies (OASIS)
  11. 1000 Functional Connectomes Project
  12. NIH Human Connectome Project (HCP)
  13. Brain Genomics Superstruct Project (GSP)