Rare biosphere

Last updated

Rare biosphere refers to a large number of rare species of microbial life, i.e. bacteria, archaea and fungi, that can be found in very low concentrations in an environment. [1]

Contents

Microbial ecosystems

Schematic of the microbial loop. Microbial Loop.jpg
Schematic of the microbial loop.

Changes in the biodiversity of an ecosystem, whether marine or terrestrial, may affect its efficiency and function. Climate change or other anthropogenic perturbations can decrease productivity and disrupt global biogeochemical cycles. The possible ramifications of such changes are not well characterized or understood, and up to a point redundancy in an ecosystem may protect it from disruption. [2]

The dynamics of microbial ecosystems are tightly coupled to biogeochemical processes. [3] For example, in the marine microbial loop, bacteria decompose organics and recycle nutrients such as nitrogen for other organisms such as phytoplankton to use. [3] A reduction in recycled nitrogen would limit the production rate of phytoplankton, in turn limiting the growth of grazers, with effects throughout the food web and nitrogen cycle. To gauge such effects, a base line of microbial diversity is needed. The species of rare biosphere can offer the gene pool that can be activated under changing conditions, thus keeping the ecosystem functional. [4] Members of the rare biosphere have been recognised as important drivers of many key ecosystem functions, for example providing bioavailable nitrogen in marine and soil environment. [5] [6]

Detection methods

Previous attempts to characterize in situ abundance of different microbial species in specific environment have been made through culturing and molecular biology techniques. [7] Culturing produces a very narrow picture of some of the rarer species present, especially when studying an environment where only less than 0,1% of all microbes are cultivable with standard methods. [7] [8] Molecular biology techniques, such as Sanger sequencing, results in a much broader scope but highlights the more abundant species present. [9] [10] Neither of these techniques capture all of the diversity present. The current state of the art practice is the use of high-throughput sequencing techniques, pioneered by Dr. Mitchell Sogin of the Marine Biological Laboratory. This method has broadened the scope of biodiversity, with the discovery of the rare biosphere. [11] High throughput sequencing, or “tag sequencing”, divides unique rRNA gene (or other target gene) tag sequences into operational taxonomic units (OTUs) based upon similarities in the DNA code of the sequenced gene region. [11] Both Sanger, shotgun sequencing, and tag sequencing organize sequences into OTUs. [9] However, it is the resolution that tag sequencing provides that sets it apart from other methods, resulting from the increased efficiency in serial analysis. [9] This efficiency increase is made possible through the use of internal primer sequences resulting in restriction digest overhanging sequences. [9] Though OTUs provide a means of distinguishing the possible number of phylogenetic groups, it is not possible to deduce phylogenetic relationships based upon OTU’s. Tags associated with OTUs must be cross-referenced with gene banks, in order for tags to be phylotyped and relationships established. [11]

The result of tag sequencing has been to produce orders of magnitude larger estimates of OTUs present in ecosystems, producing a long tail on species abundance curves. [12] [10] This long tail accounts for less than 0.1% of the abundant species in a particular ecosystem. At the same time it represents thousands of populations accounting for most of the phylogenetic diversity in an ecosystem. This low-abundance high-diversity group is the rare biosphere. Using this method, Sogin et al.’s study of microbial diversity in North Atlantic deep water produced an estimate of 5266 different taxa. [11] This is particularly dramatic considering that previous studies employing more traditional PCR cloning techniques have resulted in estimates of up to 500. [10]

Ecological role

Considering their low abundance, members of the rare biosphere may represent ancient and persistent taxa. [11] As these less abundant species are limited in number, viral infection and ultimately death by lysis is more unlikely as the viruses depend on high concentrations of host organisms to persist. [10] Additionally, being less abundant implies to limited growth, and being on the smaller end of the cell size spectrum. [10] This limits the likelihood of death by ingestion, as grazers prefer larger or more active microbes. It is important to note that just because these taxa are “rare” now does not mean that under previous conditions in our planet’s history they were “rare”. [11] These taxa could have been episodically abundant, resulting in either global changes in biogeochemical cycles or a small change of the conditions in their current environment. [11] Given the persistence of these taxa under the right conditions they have the potential to dominate, and become the more abundant taxa. [11] The occurrence of such conditions may occur on many temporal scales. It may be possible that some rare taxa dominate only during anomalous years, such as during El Niño. [7] Change in abundance may occur on a seasonal scale. [7] Global climate change may provide some of these rare taxa with the conditions necessary to increase in abundance. Even in their low abundance, taxa belonging to the rare biosphere may be affecting global biogeochemical cycles. For example, recent evidence implicates that a rare minority may be responsible for fixing more cumulative nitrogen than the abundant majority of microbial cells in marine environment. [7] [5]

A subtle and less direct manner the rare biosphere may be affecting ecosystems, in terms of biodiversity and biogeochemical cycles, is by acting as an unlimited source of genetic diversity and material. [7] [11] Currently, a lot of discussion and investigations are ongoing on how microbial communities present resilience after environmental perturbation or catastrophe and how closely related species may present unique and novel genetic attributes compared to near relatives. [11] The rare biosphere could be seen as a seed bank, transferring genes resulting in fitter recombinants that rise to become the dominant majority. [11]

Biogeography and distribution

The rare biosphere has been studied in numerous different environments, including seas, lakes, soils and even deep bedrock. [5] [13] [14] [6] [15] [16] There is some debate concerning the distribution of taxa within the rare biosphere. Taxa within this group at a given site may be in the process of dispersal. [7] [12] Studies in the Arctic seabed identified thermophilic bacteria, arriving through mechanisms of dispersal, that could not be metabolically active. [12] Once these populations, such as the thermophilic bacteria in the Arctic, reach a suitable niche they will again become metabolically active and increase in abundance. This requires that one view these populations as non-discrete, not endemic to any one particular body of water. [12] Alternatively, studies suggest that given the biogeography of rare taxa the idea of the rare biosphere being the product of dispersal seems unlikely. [13] A study in the Arctic Ocean on the biogeography of the rare biosphere found that between parcels of water within that ocean, the rare biosphere presented a large amount of diversity. This suggests that populations within the rare biosphere experience evolutionary forces specific to the location they are found, such as selection, speciation, and extinction. [13] Also, given the fact that many rare taxa cannot be identified in gene repositories, it seems unlikely that they abundant elsewhere. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Mangrove</span> Shrub growing in brackish water

A mangrove is a shrub or tree that grows in coastal saline or brackish water. The term is also used for tropical coastal vegetation consisting of such species. Mangroves are taxonomically diverse, as a result of convergent evolution in several plant families. They occur worldwide in the tropics and subtropics and even some temperate coastal areas, mainly between latitudes 30° N and 30° S, with the greatest mangrove area within 5° of the equator. Mangrove plant families first appeared during the Late Cretaceous to Paleocene epochs, and became widely distributed in part due to the movement of tectonic plates. The oldest known fossils of mangrove palm date to 75 million years ago.

<span class="mw-page-title-main">Biogeochemical cycle</span> Chemical transfer pathway between Earths biological and non-biological parts

A biogeochemical cycle is the pathway by which a chemical substance cycles the biotic and the abiotic compartments of Earth. The biotic compartment is the biosphere and the abiotic compartments are the atmosphere, hydrosphere and lithosphere. There are biogeochemical cycles for chemical elements, such as for calcium, carbon, hydrogen, mercury, nitrogen, oxygen, phosphorus, selenium, iron and sulfur, as well as molecular cycles, such as for water and silica. There are also macroscopic cycles, such as the rock cycle, and human-induced cycles for synthetic compounds such as polychlorinated biphenyls (PCBs). In some cycles there are reservoirs where a substance can remain or be sequestered for a long period of time.

<span class="mw-page-title-main">Microbial ecology</span> Study of the relationship of microorganisms with their environment

Microbial ecology is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life—Eukaryota, Archaea, and Bacteria—as well as viruses.

<span class="mw-page-title-main">Metagenomics</span> Study of genes found in the environment

Metagenomics is the study of genetic material recovered directly from environmental or clinical samples by a method called sequencing. The broad field may also be referred to as environmental genomics, ecogenomics, community genomics or microbiomics.

<span class="mw-page-title-main">Bacterioplankton</span> Bacterial component of the plankton that drifts in the water column

Bacterioplankton refers to the bacterial component of the plankton that drifts in the water column. The name comes from the Ancient Greek word πλανκτος, meaning "wanderer" or "drifter", and bacterium, a Latin term coined in the 19th century by Christian Gottfried Ehrenberg. They are found in both seawater and freshwater.

<span class="mw-page-title-main">DNA barcoding</span> Method of species identification using a short section of DNA

DNA barcoding is a method of species identification using a short section of DNA from a specific gene or genes. The premise of DNA barcoding is that by comparison with a reference library of such DNA sections, an individual sequence can be used to uniquely identify an organism to species, just as a supermarket scanner uses the familiar black stripes of the UPC barcode to identify an item in its stock against its reference database. These "barcodes" are sometimes used in an effort to identify unknown species or parts of an organism, simply to catalog as many taxa as possible, or to compare with traditional taxonomy in an effort to determine species boundaries.

<span class="mw-page-title-main">Zetaproteobacteria</span> Class of bacteria

The class Zetaproteobacteria is the sixth and most recently described class of the Pseudomonadota. Zetaproteobacteria can also refer to the group of organisms assigned to this class. The Zetaproteobacteria were originally represented by a single described species, Mariprofundus ferrooxydans, which is an iron-oxidizing neutrophilic chemolithoautotroph originally isolated from Kamaʻehuakanaloa Seamount in 1996 (post-eruption). Molecular cloning techniques focusing on the small subunit ribosomal RNA gene have also been used to identify a more diverse majority of the Zetaproteobacteria that have as yet been unculturable.

<span class="mw-page-title-main">Marine microorganisms</span> Any life form too small for the naked human eye to see that lives in a marine environment

Marine microorganisms are defined by their habitat as microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism is any microscopic living organism or virus, that is too small to see with the unaided human eye without magnification. Microorganisms are very diverse. They can be single-celled or multicellular and include bacteria, archaea, viruses and most protozoa, as well as some fungi, algae, and animals, such as rotifers and copepods. Many macroscopic animals and plants have microscopic juvenile stages. Some microbiologists also classify biologically active entities such as viruses and viroids as microorganisms, but others consider these as non-living.

Community fingerprinting is a set of molecular biology techniques that can be used to quickly profile the diversity of a microbial community. Rather than directly identifying or counting individual cells in an environmental sample, these techniques show how many variants of a gene are present. In general, it is assumed that each different gene variant represents a different type of microbe. Community fingerprinting is used by microbiologists studying a variety of microbial systems to measure biodiversity or track changes in community structure over time. The method analyzes environmental samples by assaying genomic DNA. This approach offers an alternative to microbial culturing, which is important because most microbes cannot be cultured in the laboratory. Community fingerprinting does not result in identification of individual microbe species; instead, it presents an overall picture of a microbial community. These methods are now largely being replaced by high throughput sequencing, such as targeted microbiome analysis and metagenomics.

Stable-isotope probing (SIP) is a technique in microbial ecology for tracing uptake of nutrients in biogeochemical cycling by microorganisms. A substrate is enriched with a heavier stable isotope that is consumed by the organisms to be studied. Biomarkers with the heavier isotopes incorporated into them can be separated from biomarkers containing the more naturally abundant lighter isotope by isopycnic centrifugation. For example, 13CO2 can be used to find out which organisms are actively photosynthesizing or consuming new photosynthate. As the biomarker, DNA with 13C is then separated from DNA with 12C by centrifugation. Sequencing the DNA identifies which organisms were consuming existing carbohydrates and which were using carbohydrates more recently produced from photosynthesis. SIP with 18O-labeled water can be used to find out which organisms are actively growing, because oxygen from water is incorporated into DNA (and RNA) during synthesis.

<span class="mw-page-title-main">Microbiome</span> Microbial community assemblage and activity

A microbiome is the community of microorganisms that can usually be found living together in any given habitat. It was defined more precisely in 1988 by Whipps et al. as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity". In 2020, an international panel of experts published the outcome of their discussions on the definition of the microbiome. They proposed a definition of the microbiome based on a revival of the "compact, clear, and comprehensive description of the term" as originally provided by Whipps et al., but supplemented with two explanatory paragraphs. The first explanatory paragraph pronounces the dynamic character of the microbiome, and the second explanatory paragraph clearly separates the term microbiota from the term microbiome.

<span class="mw-page-title-main">Mycoplankton</span> Fungal members of the plankton communities of aquatic ecosystems

Mycoplankton are saprotrophic members of the plankton communities of marine and freshwater ecosystems. They are composed of filamentous free-living fungi and yeasts that are associated with planktonic particles or phytoplankton. Similar to bacterioplankton, these aquatic fungi play a significant role in heterotrophicmineralization and nutrient cycling. Mycoplankton can be up to 20 mm in diameter and over 50 mm in length.

<span class="mw-page-title-main">Viral shunt</span>

The viral shunt is a mechanism that prevents marine microbial particulate organic matter (POM) from migrating up trophic levels by recycling them into dissolved organic matter (DOM), which can be readily taken up by microorganisms. The DOM recycled by the viral shunt pathway is comparable to the amount generated by the other main sources of marine DOM.

<span class="mw-page-title-main">Hydrothermal vent microbial communities</span> Undersea unicellular organisms

The hydrothermal vent microbial community includes all unicellular organisms that live and reproduce in a chemically distinct area around hydrothermal vents. These include organisms in the microbial mat, free floating cells, or bacteria in an endosymbiotic relationship with animals. Chemolithoautotrophic bacteria derive nutrients and energy from the geological activity at Hydrothermal vents to fix carbon into organic forms. Viruses are also a part of the hydrothermal vent microbial community and their influence on the microbial ecology in these ecosystems is a burgeoning field of research.

<span class="mw-page-title-main">Marine microbiome</span>

All animals on Earth form associations with microorganisms, including protists, bacteria, archaea, fungi, and viruses. In the ocean, animal–microbial relationships were historically explored in single host–symbiont systems. However, new explorations into the diversity of marine microorganisms associating with diverse marine animal hosts is moving the field into studies that address interactions between the animal host and a more multi-member microbiome. The potential for microbiomes to influence the health, physiology, behavior, and ecology of marine animals could alter current understandings of how marine animals adapt to change, and especially the growing climate-related and anthropogenic-induced changes already impacting the ocean environment.

<span class="mw-page-title-main">Marine viruses</span>

Marine viruses are defined by their habitat as viruses that are found in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. Viruses are small infectious agents that can only replicate inside the living cells of a host organism, because they need the replication machinery of the host to do so. They can infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea.

<span class="mw-page-title-main">Marine protists</span> Protists that live in saltwater or brackish water

Marine protists are defined by their habitat as protists that live in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. Life originated as marine single-celled prokaryotes and later evolved into more complex eukaryotes. Eukaryotes are the more developed life forms known as plants, animals, fungi and protists. Protists are the eukaryotes that cannot be classified as plants, fungi or animals. They are mostly single-celled and microscopic. The term protist came into use historically as a term of convenience for eukaryotes that cannot be strictly classified as plants, animals or fungi. They are not a part of modern cladistics because they are paraphyletic.

<span class="mw-page-title-main">A. Murat Eren</span> Computer scientist

A. Murat Eren (Meren) is computer scientist known for his work on microbial ecology and developing novel, open-source, computational tools for analysis of large data sets.

<span class="mw-page-title-main">Marine holobiont</span>

The holobiont concept is a renewed paradigm in biology that can help to describe and understand complex systems, like the host-microbe interactions that play crucial roles in marine ecosystems. However, there is still little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them and their ecological consequences. The holobiont concept posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution.

A virivore is an organism which obtains energy and nutrients from the consumption of viruses. Virivory is a well-described process in which organisms, primarily heterotrophic protists, but also some metazoans consume viruses as a source of nutrition.

References

  1. Pedrós-Alió, C. (2017-01-01), "Rare Biosphere☆", Reference Module in Life Sciences, Elsevier, ISBN   9780128096338 , retrieved 2019-08-23
  2. Gitay, Habiba; Suárez, Avelino; Dokken, David Jon; Watson, Robert T., eds. (April 2002). Climate Change and Biodiversity: IPCC Technical Paper V (PDF) (Report). Intergovernmental Panel on Climate Change.
  3. 1 2 Kirchman, David L., ed. (2008). Microbial Ecology of the Oceans (2nd ed.). Hoboken: John Wiley & Sons. ISBN   978-0470281833.
  4. Jousset, Alexandre; Bienhold, Christina; Chatzinotas, Antonis; Gallien, Laure; Gobet, Angélique; Kurm, Viola; Küsel, Kirsten; Rillig, Matthias C; Rivett, Damian W (April 2017). "Where less may be more: how the rare biosphere pulls ecosystems strings". The ISME Journal. 11 (4): 853–862. doi:10.1038/ismej.2016.174. ISSN   1751-7362. PMC   5364357 . PMID   28072420.
  5. 1 2 3 Sohm, Jill A.; Webb, Eric A.; Capone, Douglas G. (2011-06-16). "Emerging patterns of marine nitrogen fixation". Nature Reviews Microbiology. 9 (7): 499–508. doi:10.1038/nrmicro2594. ISSN   1740-1526. PMID   21677685. S2CID   22129785.
  6. 1 2 Zhang, Yong; Dong, Shuikui; Gao, Qingzhu; Ganjurjav, Hasbagan; Wang, Xuexia; Geng, Wei (2019-07-01). ""Rare biosphere" plays important roles in regulating soil available nitrogen and plant biomass in alpine grassland ecosystems under climate changes". Agriculture, Ecosystems & Environment. 279: 187–193. doi:10.1016/j.agee.2018.11.025. ISSN   0167-8809. S2CID   92167972.
  7. 1 2 3 4 5 6 7 Fuhrman, Jed A. (14 May 2009). "Microbial community structure and its functional implications". Nature. 459 (7244): 193–199. Bibcode:2009Natur.459..193F. doi:10.1038/nature08058. PMID   19444205. S2CID   4315476.
  8. Johansson, Jessica; Hallbeck, Lotta; Anna Hallbeck; Eriksson, Sara; Arlinger, Johanna; Pedersen, Karsten (July 2008). "Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4–450 m in Olkiluoto, Finland". The ISME Journal. 2 (7): 760–775. doi: 10.1038/ismej.2008.43 . ISSN   1751-7370. PMID   18432279.
  9. 1 2 3 4 Heidelberg, Karla B.; Gilbert, Jack A.; Joint, Ian (September 2010). "Marine genomics: at the interface of marine microbial ecology and biodiscovery". Microbial Biotechnology. 3 (5): 531–543. doi:10.1111/j.1751-7915.2010.00193.x. PMC   2948669 . PMID   20953417.
  10. 1 2 3 4 5 Pedros-Alío, C. (12 January 2007). "ECOLOGY: Dipping into the Rare Biosphere". Science. 315 (5809): 192–193. doi:10.1126/science.1135933. PMID   17218512. S2CID   82882903.
  11. 1 2 3 4 5 6 7 8 9 10 11 Sogin, M. L.; Morrison, H. G.; Huber, J. A.; Welch, D. M.; Huse, S. M.; Neal, P. R.; Arrieta, J. M.; Herndl, G. J. (31 July 2006). "Microbial diversity in the deep sea and the underexplored "rare biosphere"". Proceedings of the National Academy of Sciences. 103 (32): 12115–12120. Bibcode:2006PNAS..10312115S. doi: 10.1073/pnas.0605127103 . PMC   1524930 . PMID   16880384.
  12. 1 2 3 4 Patterson, D. J. (17 September 2009). "Seeing the Big Picture on Microbe Distribution". Science. 325 (5947): 1506–1507. doi:10.1126/science.1179690. PMID   19762632. S2CID   206522682.
  13. 1 2 3 4 Galand, P. E.; Casamayor, E. O.; Kirchman, D. L.; Lovejoy, C. (17 December 2009). "Ecology of the rare microbial biosphere of the Arctic Ocean" (PDF). Proceedings of the National Academy of Sciences. 106 (52): 22427–22432. Bibcode:2009PNAS..10622427G. doi: 10.1073/pnas.0908284106 . PMC   2796907 . PMID   20018741.
  14. Konstantinidis, Konstantinos T.; Spain, Jim C.; Poretsky, Rachel; Krishnan, Raj; Maresca, Gina; Kizer, Heidi; Weigand, Michael R.; Ruiz-Pérez, Carlos A.; Rodriguez-R, Luis M. (2017-04-15). "Quantifying the Importance of the Rare Biosphere for Microbial Community Response to Organic Pollutants in a Freshwater Ecosystem". Applied and Environmental Microbiology. 83 (8): e03321–16. doi:10.1128/AEM.03321-16. ISSN   0099-2240. PMC   5377499 . PMID   28258138.
  15. Banfield, Jillian F.; Hubbard, Susan S.; Williams, Kenneth H.; Brodie, Eoin L.; Karaoz, Ulas; Wilkins, Michael J.; Andrea Singh; Thomas, Brian C.; Probst, Alexander J. (2016-10-24). "Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system". Nature Communications. 7: 13219. Bibcode:2016NatCo...713219A. doi:10.1038/ncomms13219. ISSN   2041-1723. PMC   5079060 . PMID   27774985.
  16. Nuppunen-Puputti, Maija; Purkamo, Lotta; Kietäväinen, Riikka; Nyyssönen, Mari; Itävaara, Merja; Ahonen, Lasse; Kukkonen, Ilmo; Bomberg, Malin (2018-11-13). "Rare Biosphere Archaea Assimilate Acetate in Precambrian Terrestrial Subsurface at 2.2 km Depth". Geosciences. 8 (11): 418. Bibcode:2018Geosc...8..418N. doi: 10.3390/geosciences8110418 . ISSN   2076-3263.

Further reading