Raschig ring

Last updated
Raschig rings one inch (25 mm) ceramic RaschigRings005.JPG
Raschig rings one inch (25 mm) ceramic

A Raschig ring is a piece of tube, approximately equal in length and diameter, used in large numbers as a packed bed within columns for distillations and other chemical engineering processes. They are usually ceramic, metal, or glass and provide a large surface area within the volume of the column for interaction between liquid and gas vapours.

Contents

Raschig rings are named after their inventor, German chemist Friedrich Raschig, [1] [2] who patented them in 1914. [3] [4]

Use

They form what is known as random packing, and enabled Raschig to perform distillations of much greater efficiency than his competitors using fractional distillation columns with trays. [1]

In a distillation column, the reflux or condensed vapour runs down the column, covering the surfaces of the rings, while vapour from the reboiler goes up the column. As the vapour and liquid pass each other countercurrently in a small space, they tend toward equilibrium. Thus, less-volatile material tends to go downward, and more-volatile material upward.

They are also used for devices where gas and liquid are put in contact for purposes of gas absorption, stripping, or chemical reaction, and as a support for biofilms in biological reactors.

Raschig rings made from borosilicate glass are sometimes employed in the handling of nuclear materials. They are used inside vessels and tanks containing solutions of fissile material, for example solutions of enriched uranyl nitrate. There they act as neutron absorbers to prevent a criticality accident. [5]

Developments

Pall rings (beige and large white) and Bialecki rings (others) Pall rings (2) and Bialecki rings (6).jpg
Pall rings (beige and large white) and Białecki rings (others)

Given the success of the Raschig ring, there have been other forms developed to either improve upon it, or to avoid patents for particular designs.

The Pall-Ring, commonly spelled as Pall ring, developed by Wilhelm Pfannmüller of BASF during the WWII, [6] attempts to increase the useful aspects of packing, by giving an increased number of edges to disrupt flow, while also reducing the volume taken up by the ring packing medium itself. Rather than using a solid-walled tube, the Pall ring resembles an open basket structure of thin bars. These form both a tube and also a radial structure of cross bars. [7] Pall rings may be injection moulded of plastics, moulded of ceramics or press-formed from metal sheet.

The Raschig Super Ring represents a further development of the same concepts behind the Pall ring. It optimises the production of turbulent film-type flows and prevents the formation of drops. [8] The 'rings' no longer resemble rings but are pressed from metal sheet in the form of wave shapes of narrow strips. Super rings appeared in 1995 and have been developed through several improved generations since. [9]

The Bialecki ring, developed by the same Pfanmüller as the Pall-Ring and first patented by him in 1944, [10] is mistakenly named after the Polish chemical engineer from Kraków Zbigniew Białecki. Like the Pall rings, they are an improved version of Raschig rings. The rings may be injection moulded of plastics or press-formed from metal sheet without welding. Specific surface area of filling ranges between 60 and 440 m2/m3. [11] Advantages of Białecki rings include:

See also

Related Research Articles

<span class="mw-page-title-main">Distillation</span> Method of separating mixtures

Distillation, also classical distillation, is the process of separating the component substances of a liquid mixture of two or more chemically discrete substances; the separation process is realized by way of the selective boiling of the mixture and the condensation of the vapors in a still.

Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation to fractionate. Generally the component parts have boiling points that differ by less than 25 °C (45 °F) from each other under a pressure of one atmosphere. If the difference in boiling points is greater than 25 °C, a simple distillation is typically used.

<span class="mw-page-title-main">Fractionating column</span> Equipment to separate liquids by distillation

A fractionating column or fractional column is equipment used in the distillation of liquid mixtures to separate the mixture into its component parts, or fractions, based on their differences in volatility. Fractionating columns are used in small-scale laboratory distillations as well as large-scale industrial distillations.

<span class="mw-page-title-main">Column still</span> Apparatus used to distill liquid mixtures consisting of two columns

A column still, also called a continuous still, patent still or Coffey still, is a variety of still consisting of two columns. Column stills can produce rectified spirit.

<span class="mw-page-title-main">Industrial processes</span> Process of producing goods

Industrial processes are procedures involving chemical, physical, electrical, or mechanical steps to aid in the manufacturing of an item or items, usually carried out on a very large scale. Industrial processes are the key components of heavy industry.

<span class="mw-page-title-main">Vacuum distillation</span> Low-pressure and low-temperature distillation method

Vacuum distillation or distillation under reduced pressure is a type of distillation performed under reduced pressure, which allows the purification of compounds not readily distilled at ambient pressures or simply to save time or energy. This technique separates compounds based on differences in their boiling points. This technique is used when the boiling point of the desired compound is difficult to achieve or will cause the compound to decompose. Reduced pressures decrease the boiling point of compounds. The reduction in boiling point can be calculated using a temperature-pressure nomograph using the Clausius–Clapeyron relation.

<span class="mw-page-title-main">Volatility (chemistry)</span> Tendency of a substance to vaporize

In chemistry, volatility is a material quality which describes how readily a substance vaporizes. At a given temperature and pressure, a substance with high volatility is more likely to exist as a vapour, while a substance with low volatility is more likely to be a liquid or solid. Volatility can also describe the tendency of a vapor to condense into a liquid or solid; less volatile substances will more readily condense from a vapor than highly volatile ones. Differences in volatility can be observed by comparing how fast substances within a group evaporate when exposed to the atmosphere. A highly volatile substance such as rubbing alcohol will quickly evaporate, while a substance with low volatility such as vegetable oil will remain condensed. In general, solids are much less volatile than liquids, but there are some exceptions. Solids that sublimate such as dry ice or iodine can vaporize at a similar rate as some liquids under standard conditions.

<span class="mw-page-title-main">Continuous distillation</span> Form of distillation

Continuous distillation, a form of distillation, is an ongoing separation in which a mixture is continuously fed into the process and separated fractions are removed continuously as output streams. Distillation is the separation or partial separation of a liquid feed mixture into components or fractions by selective boiling and condensation. The process produces at least two output fractions. These fractions include at least one volatile distillate fraction, which has boiled and been separately captured as a vapor condensed to a liquid, and practically always a bottoms fraction, which is the least volatile residue that has not been separately captured as a condensed vapor.

<span class="mw-page-title-main">Packed bed</span> A hollow object filled with material that does not fully obstruct fluid flow

In chemical processing, a packed bed is a hollow tube, pipe, or other vessel that is filled with a packing material. The packed bed can be randomly filled with small objects like Raschig rings or else it can be a specifically designed structured packing. Packed beds may also contain catalyst particles or adsorbents such as zeolite pellets, granular activated carbon, etc.

<span class="mw-page-title-main">Structured packing</span>

The term structured packing refers to a range of specially designed materials for use in absorption and distillation columns and chemical reactors. Structured packings typically consist of thin corrugated metal plates or gauzes arranged in a way that force fluids to take complicated paths through the column, thereby creating a large surface area for contact between different phases.

A theoretical plate in many separation processes is a hypothetical zone or stage in which two phases, such as the liquid and vapor phases of a substance, establish an equilibrium with each other. Such equilibrium stages may also be referred to as an equilibrium stage, ideal stage, or a theoretical tray. The performance of many separation processes depends on having series of equilibrium stages and is enhanced by providing more such stages. In other words, having more theoretical plates increases the efficiency of the separation process be it either a distillation, absorption, chromatographic, adsorption or similar process.

<span class="mw-page-title-main">Condenser (laboratory)</span> Laboratory apparatus used to condense vapors

In chemistry, a condenser is laboratory apparatus used to condense vapors – that is, turn them into liquids – by cooling them down.

Stripping is a physical separation process where one or more components are removed from a liquid stream by a vapor stream. In industrial applications the liquid and vapor streams can have co-current or countercurrent flows. Stripping is usually carried out in either a packed or trayed column.

<span class="mw-page-title-main">Reflux</span> Condensation of vapors and their return to where they originated

Reflux is a technique involving the condensation of vapors and the return of this condensate to the system from which it originated. It is used in industrial and laboratory distillations. It is also used in chemistry to supply energy to reactions over a long period of time.

<span class="mw-page-title-main">Cryogenic gas plant</span> Industrial facility that creates cryogenic liquid at relatively high purity

A cryogenic gas plant is an industrial facility that creates molecular oxygen, molecular nitrogen, argon, krypton, helium, and xenon at relatively high purity. As air is made up of nitrogen, the most common gas in the atmosphere, at 78%, with oxygen at 19%, and argon at 1%, with trace gasses making up the rest, cryogenic gas plants separate air inside a distillation column at cryogenic temperatures to produce high purity gasses such as argon, nitrogen, oxygen, and many more with 1 ppm or less impurities. The process is based on the general theory of the Hampson-Linde cycle of air separation, which was invented by Carl von Linde in 1895.

Catalytic distillation is a branch of reactive distillation which combines the processes of distillation and catalysis to selectively separate mixtures within solutions. Its main function is to maximize the yield of catalytic organic reactions, such as the refining of gasoline. The earliest case of catalytic distillation was thought to have dated back to 1966; however, the idea was officially patented in 1980 by Lawrence A. Smith, Jr. The process is currently used to purify gasoline, extract rubber, and form plastics.

Aspen Plus, Aspen HYSYS, ChemCad and MATLAB, PRO are the commonly used process simulators for modeling, simulation and optimization of a distillation process in the chemical industries. Distillation is the technique of preferential separation of the more volatile components from the less volatile ones in a feed followed by condensation. The vapor produced is richer in the more volatile components. The distribution of the component in the two phase is governed by the vapour-liquid equilibrium relationship. In practice, distillation may be carried out by either two principal methods. The first method is based on the production of vapor boiling the liquid mixture to be separated and condensing the vapors without allowing any liquid to return to the still. There is no reflux. The second method is based on the return of part of the condensate to still under such conditions that this returning liquid is brought into intimate contact with the vapors on their way to condenser.

Dixon rings are a form of random packing used in chemical processing. They consist of a stainless steel mesh formed into a ring with a central divider, and are intended to be packed randomly into a packed column. Dixon rings provide a large surface area and low pressure drop while maintaining a high mass transfer rate, making them useful for distillations and many other applications.

Random column packing is the practice of packing a distillation column with randomly fitting filtration material in order to optimize surface area over which reactants can interact while minimizing the complexity of construction of such columns. Random column packing is an alternative to structured column packing.

References

  1. 1 2 Andrea Sella (27 August 2008). "Raschig's Rings". Chemistry World. 5 (9): 83.
  2. "Product description: Ceramic Raschig Ring". LianChuang. 15 July 2016.
  3. GB 191406288A
  4. "The Creation of Raschig Rings". Raschig USA. 17 February 2023.
  5. Oak Ridge Associated Universities Raschig Rings for Criticality Control (1980s)
  6. https://raschig-usa.com/wp-content/uploads/2020/pdf/The%20Impact%20of%20Tower%20Internals%20on%20Packing%20performance.pdf [ bare URL PDF ]
  7. "Pall Ring" (PDF). Raschig-Jaeger Technologies.
  8. "Raschig Super-Ring" (PDF). Raschig-Jaeger Technologies.
  9. Schultes, M. (January 2003). "Raschig Super-Ring: A New Fourth Generation Packing Offers New Advantages". Chemical Engineering Research and Design. 81 (1, International Conference on Distillation and Absorption): 48–57. doi:10.1205/026387603321158186.
  10. DE 853159C
  11. "Stainless Białecki Ring". ZPWK.
  12. "Białecki Ring". DSN DOLSIN.