Rate-distortion optimization (RDO) is a method of improving video quality in video compression. The name refers to the optimization of the amount of distortion (loss of video quality) against the amount of data required to encode the video, the rate. While it is primarily used by video encoders, rate-distortion optimization can be used to improve quality in any encoding situation (image, video, audio, or otherwise) where decisions have to be made that affect both file size and quality simultaneously.
The classical method of making encoding decisions is for the video encoder to choose the result which yields the highest quality output image. However, this has the disadvantage that the choice it makes might require more bits while giving comparatively little quality benefit. One common example of this problem is in motion estimation, [1] and in particular regarding the use of quarter pixel-precision motion estimation. Adding the extra precision to the motion of a block during motion estimation might increase quality, but in some cases that extra quality isn't worth the extra bits necessary to encode the motion vector to a higher precision.
Rate-distortion optimization solves the aforementioned problem by acting as a video quality metric, measuring both the deviation from the source material and the bit cost for each possible decision outcome. The bits are mathematically measured by multiplying the bit cost by the Lagrangian, a value representing the relationship between bit cost and quality for a particular quality level. The deviation from the source is usually measured as the mean squared error, in order to maximize the PSNR video quality metric.
Calculating the bit cost is made more difficult by the entropy encoders in modern video codecs, requiring the rate-distortion optimization algorithm to pass each block of video to be tested to the entropy coder to measure its actual bit cost. In MPEG codecs, the full process consists of a discrete cosine transform, followed by quantization and entropy encoding. Because of this, rate-distortion optimization is much slower than most other block-matching metrics, such as the simple sum of absolute differences (SAD) and sum of absolute transformed differences (SATD). As such it is usually used only for the final steps of the motion estimation process, such as deciding between different partition types in H.264/AVC.
In information technology, lossy compression or irreversible compression is the class of data compression methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. The different versions of the photo of the cat on this page show how higher degrees of approximation create coarser images as more details are removed. This is opposed to lossless data compression which does not degrade the data. The amount of data reduction possible using lossy compression is much higher than using lossless techniques.
A video codec is software or hardware that compresses and decompresses digital video. In the context of video compression, codec is a portmanteau of encoder and decoder, while a device that only compresses is typically called an encoder, and one that only decompresses is a decoder.
Advanced Video Coding (AVC), also referred to as H.264 or MPEG-4 Part 10, is a video compression standard based on block-oriented, motion-compensated coding. It is by far the most commonly used format for the recording, compression, and distribution of video content, used by 91% of video industry developers as of September 2019. It supports a maximum resolution of 8K UHD.
DVB-T, short for Digital Video Broadcasting – Terrestrial, is the DVB European-based consortium standard for the broadcast transmission of digital terrestrial television that was first published in 1997 and first broadcast in Singapore in February, 1998. This system transmits compressed digital audio, digital video and other data in an MPEG transport stream, using coded orthogonal frequency-division multiplexing modulation. It is also the format widely used worldwide for Electronic News Gathering for transmission of video and audio from a mobile newsgathering vehicle to a central receive point. It is also used in the US by Amateur television operators.
H.261 is an ITU-T video compression standard, first ratified in November 1988. It is the first member of the H.26x family of video coding standards in the domain of the ITU-T Study Group 16 Video Coding Experts Group. It was the first video coding standard that was useful in practical terms.
x264 is a free and open-source software library and a command-line utility developed by VideoLAN for encoding video streams into the H.264/MPEG-4 AVC video coding format. It is released under the terms of the GNU General Public License.
Quarter-pixel motion(also known as Q-pel motion or Qpel motion) refers to using a quarter of the distance between pixels as the motion vector precision for motion estimation and motion compensation in video compression schemes. It is used in many modern video coding formats such as MPEG-4 ASP and H.264/AVC. Though higher precision motion vectors take more bits to encode, they can sometimes result in more efficient compression overall, by increasing the quality of the prediction signal.
Α video codec is software or a device that provides encoding and decoding for digital video, and which may or may not include the use of video compression and/or decompression. Most codecs are typically implementations of video coding formats.
The following is a list of H.264/MPEG-4 AVC products and implementations.
PureVideo is Nvidia's hardware SIP core that performs video decoding. PureVideo is integrated into some of the Nvidia GPUs, and it supports hardware decoding of multiple video codec standards: MPEG-2, VC-1, H.264, HEVC, and AV1. PureVideo occupies a considerable amount of a GPU's die area and should not be confused with Nvidia NVENC. In addition to video decoding on chip, PureVideo offers features such as edge enhancement, noise reduction, deinterlacing, dynamic contrast enhancement and color enhancement.
AVC-Intra is a type of video coding developed by Panasonic, and then supported in products made by other companies. AVC-Intra is available in Panasonic's high definition broadcast products, such as, for example, their P2 card equipped broadcast cameras.
High Efficiency Video Coding (HEVC), also known as H.265 and MPEG-H Part 2, is a video compression standard designed as part of the MPEG-H project as a successor to the widely used Advanced Video Coding. In comparison to AVC, HEVC offers from 25% to 50% better data compression at the same level of video quality, or substantially improved video quality at the same bit rate. It supports resolutions up to 8192×4320, including 8K UHD, and unlike the primarily 8-bit AVC, HEVC's higher fidelity Main 10 profile has been incorporated into nearly all supporting hardware.
Chips&Media, Inc. is a provider of intellectual property for integrated circuits such as system on a chip technology for encoding and decoding video, and image processing. Headquartered in Seoul, South Korea.
x265 is an encoder for creating digital video streams in the High Efficiency Video Coding (HEVC/H.265) video compression format developed by the Joint Collaborative Team on Video Coding (JCT-VC). It is available as a command-line app or a software library, under the terms of GNU General Public License (GPL) version 2 or later; however, customers may request a commercial license.
A video coding format is a content representation format of digital video content, such as in a data file or bitstream. It typically uses a standardized video compression algorithm, most commonly based on discrete cosine transform (DCT) coding and motion compensation. A specific software, firmware, or hardware implementation capable of compression or decompression in a specific video coding format is called a video codec.
VP9 is an open and royalty-free video coding format developed by Google.
Thomson Video Networks (TVN) was a technology broadcast company that used to provide video compression, transcoding and processing solutions for media companies, video service providers, and TV broadcasters. The firm has offices in 16 countries and headquarters in Rennes, France. TVN has been acquired by Harmonic Inc. in 2016.
AOMedia Video 1 (AV1) is an open, royalty-free video coding format initially designed for video transmissions over the Internet. It was developed as a successor to VP9 by the Alliance for Open Media (AOMedia), a consortium founded in 2015 that includes semiconductor firms, video on demand providers, video content producers, software development companies and web browser vendors. The AV1 bitstream specification includes a reference video codec. In 2018, Facebook conducted testing that approximated real-world conditions, and the AV1 reference encoder achieved 34%, 46.2%, and 50.3% higher data compression than libvpx-vp9, x264 High profile, and x264 Main profile respectively.
ZPEG is a motion video technology that applies a human visual acuity model to a decorrelated transform-domain space, thereby optimally reducing the redundancies in motion video by removing the subjectively imperceptible. This technology is applicable to a wide range of video processing problems such as video optimization, real-time motion video compression, subjective quality monitoring, and format conversion.