Reconfiguration

Last updated

In discrete mathematics and theoretical computer science, reconfiguration problems are computational problems involving reachability or connectivity of state spaces.

Contents

Types of problems

Here, a state space is a discrete set of configurations of a system or solutions of a combinatorial problem, called states, together with a set of allowed moves linking one state to another. Reconfiguration problems may ask:

Examples

Examples of problems studied in reconfiguration include:

References

  1. Demaine, Erik D.; Demaine, Martin L.; Eisenstat, Sarah; Lubiw, Anna; Winslow, Andrew (2011), "Algorithms for solving Rubik's cubes", Algorithms – ESA 2011: 19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011, Proceedings, Lecture Notes in Computer Science, vol. 6942, Springer, Heidelberg, pp. 689–700, arXiv: 1106.5736 , doi:10.1007/978-3-642-23719-5_58, ISBN   978-3-642-23718-8, MR   2893242, S2CID   664306
  2. Culberson, Joseph (1997), Sokoban is PSPACE-complete, Technical report TR97-02, University of Alberta, Department of Computing Science, doi:10.7939/R3JM23K33, hdl: 10048/27119
  3. Pournin, Lionel (2014), "The diameter of associahedra", Advances in Mathematics , 259: 13–42, arXiv: 1207.6296 , doi: 10.1016/j.aim.2014.02.035 , MR   3197650
  4. Kanj, Iyad; Sedgwick, Eric; Xia, Ge (2017), "Computing the flip distance between triangulations", Discrete & Computational Geometry , 58 (2): 313–344, arXiv: 1407.1525 , doi:10.1007/s00454-017-9867-x, MR   3679938, S2CID   254033552
  5. Lubiw, Anna; Pathak, Vinayak (2015), "Flip distance between two triangulations of a point set is NP-complete", Computational Geometry , 49: 17–23, arXiv: 1205.2425 , doi: 10.1016/j.comgeo.2014.11.001 , MR   3399985
  6. Aichholzer, Oswin; Mulzer, Wolfgang; Pilz, Alexander (2015), "Flip distance between triangulations of a simple polygon is NP-complete", Discrete & Computational Geometry , 54 (2): 368–389, arXiv: 1209.0579 , doi:10.1007/s00454-015-9709-7, MR   3372115, S2CID   254037222
  7. Cereceda, Luis (2007), Mixing graph colourings, doctoral dissertation, London School of Economics. See especially page 109.
  8. Johnson, Matthew; Kratsch, Dieter; Kratsch, Stefan; Patel, Viresh; Paulusma, Daniël (2016), "Finding shortest paths between graph colourings" (PDF), Algorithmica, 75 (2): 295–321, doi:10.1007/s00453-015-0009-7, MR   3506195, S2CID   253974066
  9. Bonsma, Paul; Cereceda, Luis (2009), "Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances", Theoretical Computer Science, 410 (50): 5215–5226, doi:10.1016/j.tcs.2009.08.023, MR   2573973
  10. van der Zanden, Tom C. (2015), "Parameterized complexity of graph constraint logic", 10th International Symposium on Parameterized and Exact Computation, LIPIcs. Leibniz Int. Proc. Inform., vol. 43, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, pp. 282–293, arXiv: 1509.02683 , doi: 10.4230/LIPIcs.IPEC.2015.282 , MR   3452428, S2CID   15959029
  11. Hearn, Robert A.; Demaine, Erik D. (2005), "PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation", Theoretical Computer Science , 343 (1–2): 72–96, arXiv: cs/0205005 , doi:10.1016/j.tcs.2005.05.008, MR   2168845, S2CID   656067