Red Steer

Last updated
Red Steer
Vulcan B2 XJ784 at Bagotville.jpg
Red Steer at the tip of an Avro Vulcan's tailcone
Country of originUK
Manufacturer EKCO
Introduced1957
Frequency X band
RPM1,000
Range18 nmi (33 km; 21 mi)
Diameter18 in (460 mm)
Azimuth 45º
Power200 kW
Other NamesARI 5919, ARI 5952

Red Steer, also known as ARI 5919 and ARI 5952 [lower-alpha 1] depending on the version, was a tail warning radar used on the British V bomber force. Built by EKCO, it was developed from the experimental AI.20 radar for the English Electric Lightning. The Lightning required its radar to be remotely installed in the nose of the aircraft, and this made the set equally suitable for remote mounting in the tail of the bombers.

Contents

Red Steer scanned a cone 45 degrees across behind the aircraft and presented any returns on a display at the electronic warfare station. It was able to reliably detect large fighter-sized aircraft at about 10 nautical miles (19 km; 12 mi). Lacking any defensive weapons, the purpose of Red Steer was to allow the operator to give instructions to the bomber pilot to evade the approach of an interceptor, as well as properly time the use of various electronic countermeasures against the interceptor's radar, notably the Red Shrimp.

Red Steer began replacing the earlier Orange Putter in 1957, after crews suggested the earlier system was too limited. In service, Red Steer was found to be difficult to operate due to its display system. This led to the upgraded Mark 2 version with a greatly improved display and increased range to 25 nautical miles (46 km; 29 mi). These were fitted to the Avro Vulcan and Handley Page Victor fleet in the 1960s and remained in operation with them until they left service in the 1980s and 90s.

History

AI.20

During the initial work that led to the English Electric Lightning, Ferranti proposed an entirely new Airborne Interception radar system. It was to be fully computerized, automating the entire task of detecting a target, plotting an efficient interception course, and cueing the weapons fire when the target came into range. Further, the system presented this data not on a dimly lit cathode ray tube (CRT), but projected right on the pilot's gunsight. [2] The system, later known as AIRPASS, was more advanced than any other AI radar at the time. [3]

Some within the Air Ministry felt that it might be too advanced and brought technical risk that might delay the Lightning program. They ordered a second system using conventional electronics as a backup. A contract was sent out in 1952 and won by EKCO based on their work on the illuminator radar for the Blue Jay missile. EKCO had developed a medium-range limited-angle radar for that role, but it could be easily adapted to provide longer range and greater angles. The main new feature of the system was to use the very high voltage power supply that normally fed only the radar's magnetron and using it to power the CRT display as well. This provided enough brightness to be read even in full sunlight. [4]

Assigned the rainbow code "Green Willow", the new radar entered testing in 1955. By this time, the first AIRPASS units were also entering testing and it appeared there were no red-flag issues that might delay its production. Green Willow, also known by this time as AI.20, was cancelled. [4]

Red Steer

Shortly after the cancellation of AI.20, the first of the V bombers entered squadron service. These aircraft were equipped with a simple tail warning radar known as "Orange Putter", originally built for the English Electric Canberra. In early V-bomber use it was found to be almost useless in its intended role of warning the bomber of an approaching interceptor aircraft with enough time to take evasive action. [5]

This led to a 1956 Request for Quotation for an improved radar in the tail warning role. In order to fit within the tailcone area, a small, containerized system was required. This made the AIRPASS and AI.20, both designed to fit in the nose cone of the Lightning, naturally suited to this role. [5] As the radar only needed to provide direction and range information, the complexity of a system like AIRPASS was not required and there was no need for the more complex calculations its computers provided. This made the simpler AI.20 almost perfectly suited to the role. The only concern was that the 30 kV supply line now had to run not just a few feet from the nose to the cockpit, but from the rear of a very large aircraft to the front, through the fuselage. This required new couplings and tests in a vacuum. [6]

Assigned the rainbow code "Red Steer", the project appears to be named in honour of RRE Project Officer Gerry Steer, [5] as opposed to something totally unrelated, as required by the Rainbow Code rules. [7] A Vickers Valiant was modified to carry the system in testing. [5] In January 1958 it demonstrated its ability to detect a Hawker Hunter with a 75% probability at 10 nautical miles (19 km; 12 mi), rising to 100% at 8 nautical miles (15 km; 9.2 mi). [6]

All further installations were carried out on the Avro Vulcans and Handley Page Victors. These installations were known as ARI 5919. [8] From 1960, these aircraft were modified with larger tail cone sections to carry both Red Steer and a much-enlarged suite of electronic countermeasures. [5]

Mk. 2

In operational use, the display system of Red Steer was found to be difficult to interpret correctly. This was due to the spiral scan display, which showed the zenith angle of the target relative to the tail of the aircraft directly, but the angle out from the centreline was shown as the length of the blip and the range as the distance from the centre. As the interceptor approached, the blip would grow in length and begin to move rapidly on the display. The resulting motion of the blip has been described as a "nightmare to interpret" [9] and led to jokes about the Soviets not attempting to jam it as such attempts would not make it any harder to read. [10]

This led to the introduction of the Red Steer Mark 2 in the late 1960s, the original version retroactively becoming Mark 1. The system abandoned the spiral-scan display and instead used an X-Y scan (C-scope) that swept horizontally across 70 degrees in azimuth and then stepped up or down to make another sweep at a different elevation, making a complete cycle from 25 degrees above to below the centreline over a period of eight horizontal scans. The system had an effective range against fighter-sized targets at 25 nautical miles (46 km; 29 mi), which provided ample tracking time before the interceptor could close to missile range. These units were known as ARI 5952 in service. [8]

Mark 2 units remained in service through the lifetime of the V-force, leaving front-line bomber service in 1984. Their only use in combat was on the Vulcans taking part in Operation Black Buck during the 1982 Falklands War. In this case, the unit aboard XM607 failed when the pressurization of the radar unit failed due to the 15-hour flight at high altitude, far longer than anticipated in its design. The last units to see action were those aboard the Victor air tankers during the Gulf War in 1992. These were officially retired in 1994. The operational details of the Red Steer signals remain classified to this day. [6]

Description

Mk 1/ARI 5919

The original ARI 5919 version consisted of two units, the radar system in the tail and the display unit at the Air Electronics Officer (AEO) station in the cockpit. The radar used an 18 inches (460 mm) parabolic reflector driven in a spiral at 1000 rpm by a 12 horsepower electric motor. The scanning went from dead astern to 45 degrees out over a period of 18 rotations, and then back in again, scanning out a 90 degree cone over a period of about 2+14 seconds. [4]

The display unit, developed when available phosphors were dim, required very high voltages to allow it to be visible in a sunlight fighter cockpit. For this purpose, they used a single 30 kV power supply for both the radar and the display, running a highly insulated cable the short distance from the nose of the aircraft to the display in the cockpit. The high output was not required in the V-bomber installations as the EW station is not brightly lit, but the system was not modified. This required the high voltage line to be run most of the length of the aircraft from the tail to the EW station. This presented some concern, and led to extensive testing and the development of new connectors. [4]

The beam-width of the scanner was about 5.5 degrees, which meant that a target at long range would "paint" a short arc on the CRT display as it moved during scanning. The angle of the "blip" around the face of the display indicated the target's angle in relation to dead astern, for instance, a blip at the 10 o'clock location on the display indicated the target was to the left and slightly above the bomber. However, as the target approached the dead astern location, the beam-width meant it would become illuminated for more time, eventually all the time. This resulted in the blip stretching out around the display, eventually turning into a ring. The total angle of the blip thus indicated how close to centred the target was; at 3 degrees off-centre, it produced an arc 180 degrees wide. [6]

To further confuse issues, the display was "inside out" compared to other spiral-scan radars. The blip on the display was produced by sending the output from the radar receiver amplifier to the CRT's brightness control, causing the normally invisible beam to brighten to visibility. In most such radars, the beam was drawn from the centre of the tube outward over the time of the radar pulse and its return, so the blip would appear further from the centre as the range increased. This had the undesirable side-effect that the return tended to disappear at close range because the centre of the display was often showing a continual bright dot due to it constantly being drawn over even at normally invisible intensity. For AI.20, then, this was reversed, with the beam being drawn outside-in, avoiding this problem and rendering only very distant targets in the dead area. Unfortunately, this produced an almost unreadable display at short range as the blip grew to huge size and moved rapidly around the face of the display as the target changed location even slightly. [6]

Mk 2/ARI 5952

Late model Vulcans featured a greatly enlarged tail area that contained an expanded suite of electronic countermeasures, including the ARI 5952 dome at the extreme end Avro 698 Vulcan B2, UK - Air Force AN1358039.jpg
Late model Vulcans featured a greatly enlarged tail area that contained an expanded suite of electronic countermeasures, including the ARI 5952 dome at the extreme end

For the ARI 5952 version, the scanner and display were replaced, keeping the rest of the radar electronics including the transmitter and receiver systems. The scanner was taken from the EKCO E190 weather radar for airliners. The new M2269 scanner had a 24 inches (610 mm) reflector which reduced the beam-width to 3.7 degrees and thereby increased gain. [6]

The scanner moved side-to-side instead of in a spiral, sweeping 75 degrees to either side of the aircraft centreline, producing a display 150 degrees wide behind the aircraft. With each sweep, the scanner would "nod" up or down in eight steps, finishing 25 degrees above and below the centreline. The result was a rectangular scanning pattern somewhat wider than the original, but with somewhat less vertical coverage. As the V bombers were now approaching their targets at low altitude, the lack of vertical coverage was not a concern. The entire system was stabilized to the line of sight, so the image did not move as the aircraft manoeuvred, another major advantage over the original model. [6]

The matching M2212 display was also rectangular, at 3 by 5 inches (76 by 127 mm). It used a more modern yellow phosphor and no longer required the high voltage feed in order to be visible in direct sunlight. [6]

Units on display

Notes

  1. ARI is short for "Airborne Radio Installation". [1]

Related Research Articles

<span class="mw-page-title-main">H2S (radar)</span> First airborne, ground scanning radar system WWII

H2S was the first airborne, ground scanning radar system. It was developed for the Royal Air Force's Bomber Command during World War II to identify targets on the ground for night and all-weather bombing. This allowed attacks outside the range of the various radio navigation aids like Gee or Oboe, which were limited to about 350 kilometres (220 mi) of range from various base stations. It was also widely used as a general navigation system, allowing landmarks to be identified at long range.

<span class="mw-page-title-main">3D radar</span>

3D radar provides for radar ranging and direction in three dimensions. In addition to range, the more common two-dimensional radar provides only azimuth for direction, whereas the 3D radar also provides elevation. Applications include weather monitoring, air defense, and surveillance.

Gee-H, sometimes written G-H or GEE-H, was a radio navigation system developed by Britain during World War II to aid RAF Bomber Command. The name refers to the system's use of the earlier Gee equipment, as well as its use of the "H principle" or "twin-range principle" of location determination. Its official name was AMES Type 100.

<span class="mw-page-title-main">Terrain-following radar</span> Radar used for extremely low level flight

Terrain-following radar (TFR) is a military aerospace technology that allows a very-low-flying aircraft to automatically maintain a relatively constant altitude above ground level and therefore make detection by enemy radar more difficult. It is sometimes referred to as ground hugging or terrain hugging flight. The term nap-of-the-earth flight may also apply but is more commonly used in relation to low-flying military helicopters, which typically do not use terrain-following radar.

Serrate was a World War II Allied radar detection and homing device used by night fighters to track Luftwaffe night fighters equipped with the earlier UHF-band BC and C-1 versions of the Lichtenstein radar. It allowed RAF night fighters to attack their German counterparts, disrupting their attempts to attack the RAF's bomber force.

The Rainbow Codes were a series of code names used to disguise the nature of various British military research projects. They were mainly used by the Ministry of Supply from the end of the Second World War until 1958, when the ministry was broken up and its functions distributed among the forces. The codes were replaced by an alphanumeric code system.

<span class="mw-page-title-main">Automatic Gun-Laying Turret</span> Radar-directed, rear gun turret fitted to some British bombers in World War II

The Automatic Gun-Laying Turret (AGLT), also known as the Frazer-Nash FN121, was a radar-directed, rear gun turret fitted to some British bombers from 1944. AGLT incorporated both a low-power tail warning radar and fire-control system, which could detect approaching enemy fighters, aim and automatically trigger machine guns – in total darkness or cloud cover if necessary. The radar warning and fire-control system itself was commonly known by the code names Village Inn and "Z Equipment", as well as the serial number TR3548.

Monopulse radar is a radar system that uses additional encoding of the radio signal to provide accurate directional information. The name refers to its ability to extract range and direction from a single signal pulse.

<span class="mw-page-title-main">Radar display</span> Electronic device

A radar display is an electronic device that presents radar data to the operator. The radar system transmits pulses or continuous waves of electromagnetic radiation, a small portion of which backscatter off targets and return to the radar system. The receiver converts all received electromagnetic radiation into a continuous electronic analog signal of varying voltage that can be converted then to a screen display.

In radar systems, the blip-to-scan ratio, or blip/scan, is the ratio of the number of times a target appears on a radar display to the number of times it theoretically could be displayed. Alternately it can be defined as the ratio of the number of scans in which an accurate return is received to the total number of scans.

<span class="mw-page-title-main">AI Mark IV radar</span> Operational model of the worlds first air-to-air radar system

Radar, Airborne Interception, Mark IV, produced by USA as SCR-540, was the world's first operational air-to-air radar system. Early Mk. III units appeared in July 1940 on converted Bristol Blenheim light bombers, while the definitive Mk. IV reached widespread availability on the Bristol Beaufighter heavy fighter by early 1941. On the Beaufighter, the Mk. IV arguably played a role in ending the Blitz, the Luftwaffe's night bombing campaign of late 1940 and early 1941.

<span class="mw-page-title-main">AI Mark VIII radar</span> Type of air-to-air radar

Radar, Airborne Interception, Mark VIII, or AI Mk. VIII for short, was the first operational microwave-frequency air-to-air radar. It was used by Royal Air Force night fighters from late 1941 until the end of World War II. The basic concept, using a moving parabolic antenna to search for targets and track them accurately, remained in use by most airborne radars well into the 1980s.

<span class="mw-page-title-main">Airborne Interception radar</span>

Airborne Interception radar, or AI for short, is the British term for radar systems used to equip aircraft in air-to-air role. These radars are used primarily by Royal Air Force (RAF) and Fleet Air Arm night fighters and interceptors for locating and tracking other aircraft, although most AI radars could also be used in a number of secondary roles as well. The term was sometimes used generically for similar radars used in other countries.

<span class="mw-page-title-main">GL Mk. I radar</span>

Radar, Gun Laying, Mark I, or GL Mk. I for short, was an early radar system developed by the British Army to provide range information to associated anti-aircraft artillery. There were two upgrades to the same basic system, GL/EF and GL Mk. II, both of which added the ability to accurately determine bearing and elevation.

Klein Heidelberg (KH) was a passive radar system deployed by the Germans during World War II. It used the signals broadcast by the British Chain Home system as its transmitter, and a series of six stations along the western coast of continental Europe as passive receivers. In modern terminology, the system was a bistatic radar. Because the system sent no signals of its own, the allies were unaware of its presence, and did not learn of the system until well after the D-Day invasion. The system is referred to as Klein Heidelberg Parasit in some references.

<span class="mw-page-title-main">AN/MPQ-4</span>

The Radar Set AN/MPQ-4 was a US Army counter-battery radar primarily used to find the location of enemy mortars and larger artillery in a secondary role. Built by General Electric, it first entered service in 1958, replacing the earlier and much simpler AN/MPQ-10. The MPQ-4 could determine the location of an enemy mortar in as little as 20 seconds by observing a single round, whereas the MPQ-10 required several rounds to be launched and could take 4 to 5 minutes to take a "fix". The MPQ-4 remained one of the primary US counter-battery systems through the late 1970s until it was replaced by passive electronically scanned array radars like the AN/TPQ-36.

<span class="mw-page-title-main">AIRPASS</span> British interceptor radar/avionics system

AIRPASS was a British airborne interception radar and fire-control radar system developed by Ferranti. It was the world's first airborne monopulse radar system and fed data to the world's first head-up display. The name is an acronym for "Airborne Interception Radar and Pilot's Attack Sight System". In the Royal Air Force (RAF) it was given the official name Radar, Airborne Interception, Mark 23, normally shortened to AI.23. AIRPASS was used on the English Electric Lightning throughout its lifetime.

<span class="mw-page-title-main">ASV Mark III radar</span>

Radar, Air-to-Surface Vessel, Mark III, or ASV Mk. III for short, was a surface search radar system used by RAF Coastal Command during World War II. It was a slightly modified version of the H2S radar used by RAF Bomber Command, with minor changes to the antenna to make it more useful for the anti-submarine role. It was Coastal Command's primary radar from the spring of 1943 until the end of the war. Several improved versions were introduced, notably the ASV Mark VI, which replaced most Mk. IIIs from 1944 and ASV Mark VII radar, which saw only limited use until the post-war era.

<span class="mw-page-title-main">AMES Type 7</span>

The AMES Type 7, also known as the Final GCI, was a ground-based radar system introduced during World War II by the Royal Air Force (RAF). The Type 7 was the first truly modern radar used by the Allies, providing a 360 degree view of the airspace around the station out to a distance of about 90 miles (140 km). It allowed fighter interceptions to be plotted directly from the radar display, a concept known as ground controlled intercept, or GCI.

Radar, Airborne Interception, Mark 20, AI.20 for short, also known by its rainbow codename Green Willow, was a prototype Airborne Interception radar developed by EKCO for the English Electric Lightning interceptor aircraft. It was ordered as a backup system in case the more advanced AIRPASS radar from Ferranti failed to develop, but when AIRPASS entered testing in 1955, AI.20 was dropped. The system was used, almost unchanged, as the basis for the Red Steer tail warning radar used in the Handley Page Victor and Avro Vulcan strategic bombers.

References

Citations

  1. "Hunter FR 10: radio acceptance trials of ARI (Airborne Radio Installation) 5848 IFF". UK National Archives.
  2. Kim, John (2016). "Rupture of the Virtual". Books. Digital Commons Macalester College: 54.
  3. Roulston, John (2008). "The Post-War Development of Fighter Radar in Europe – A British Perspective". RADAR. IEEE. p. 2.
  4. 1 2 3 4 Poole1.
  5. 1 2 3 4 5 Henry 2016.
  6. 1 2 3 4 5 6 7 8 Poole2.
  7. Houghton, Vince (2019). Nuking the Moon. Penguin. p. 54. ISBN   9780525505181.
  8. 1 2 Powell 2003, p. 8.
  9. Powell 2003, p. 80.
  10. Powell 2003, p. 110.

Bibliography