AI.20 radar

Last updated
AI.20
Country of originUK
Manufacturer EKCO
Introduced1955 (testing)
Frequency X band
RPM1,000
Range25 mi (40 km)
Diameter18 in (460 mm)
Azimuth 45º
Power200 kW
Other NamesGreen Willow
RelatedRed Steer

Radar, Airborne Interception, Mark 20, AI.20 for short, also known by its rainbow codename Green Willow, was a prototype Airborne Interception radar developed by EKCO for the English Electric Lightning interceptor aircraft. It was ordered as a backup system in case the more advanced AIRPASS radar from Ferranti failed to develop, but when AIRPASS entered testing in 1955, AI.20 was dropped. The system was used, almost unchanged, as the basis for the Red Steer tail warning radar used in the Handley Page Victor and Avro Vulcan strategic bombers.

Contents

History

When the English Electric Lightning project first began, existing Airborne Interception radar systems were generally just more powerful versions of their World War II counterparts, using newer magnetron and klystron-based microwave tubes and more sensitive receivers, but otherwise using the same mechanical scanning concepts and simplified processing that generally required a dedicated crewmember to operate. Some British AI radars of the post-war era were hand-me-down units from the US. [1]

For the Lightning, Ferranti proposed an advanced Airborne Interception radar system that would leapfrog any radar system then in use. An analog computer would read the output from the radar and store it, presenting that information on the pilot's gunsight rather than a traditional display. Additionally, the computer would calculate a proper interception course and display a marker in the gunsight, greatly easing the workload. This was the first true heads up display, a major advance that allowed a single-crew aircraft to be an effective interceptor for the first time. [2] The result was AIRPASS, short for "Airborne Interception and Pilot's Attack Sight System".

AIRPASS was very advanced, so much so that some in the Radar Research Establishment (RRE) felt that there was the possibility that the system would not mature in time for it to be used on the aircraft, if at all. Accordingly, a second project began for a simpler system, essentially a modernized version of the existing radars. The main change in the requirements was that the display was going to be used by the pilot, not a radar operator, which meant it needed a much brighter display as the pilot could not be expected to put their head down into a hood during the final approach. [3]

The contract for the backup system was awarded to EKCO in late 1953 and assigned the rainbow code "Green Willow". It is believed that they won the contract due to their ongoing work with the "Blue Sky" missile, which emerged as Fireflash. For Blue Sky, EKCO had developed a spiral-scan radar with a range of about 10 miles (16 km) although only against targets very close to the centerline of the radar. A major advantage of this design is that it had been designed as a single unit so it could be fit into the nose of smaller single-seat fighters like the Supermarine Swift, which made it a suitable starting point for the small area available in the Lightning. [3]

For the new radar, power was increased once again, using a 100 kW peak power klystron. The entire system packaged into a pressurized housing, which required the development of an inflatable seal for the fibreglass nose cone. [3]

A significant problem was making a display that could be seen in the cockpit. As the Lightning would be spending most of its time flying above the clouds, it had to be visible even in direct sunlight. To produce bright enough symbols on a cathode ray tube (CRT) required an extremely powerful electron gun. The team selected a 2+12 inch model originally powered at 25 kV used for projection television and then adapted that to a 5 inch size display powered at 30 kV. As there was no way to fit a power supply with the required voltage into the instrument panel, power was instead supplied via a long insulated electrical line from the radar's own power supply. [3]

The system was otherwise conventional, using a spiral-scan pattern essentially identical to that of the wartime AI Mark VIII but running at significantly higher speed of 1,000 rpm and "nodding" in and out from dead ahead to 45 degrees off-axis in 18 revolutions and then back again, a complete scan requiring about 2+14 seconds. Driving this required a 12 horsepower electrical motor running at 10,000 rpm. [3]

The first systems began operational tests in 1955 from RAF Defford, home of the RRE's experimental flight unit. It demonstrated a 95% probability of acquiring a Hawker Hunter sized target at 7 nautical miles (13 km; 8.1 mi). However, by that time the AIRPASS had also begun tests and appeared to have no obvious red-flag issues, so the AI.20 was cancelled. [3]

In 1955, the Royal Aircraft Establishment published a requirement for a new tail warning radar for the V bombers that had greater performance than the existing Orange Putter that had been developed for the English Electric Canberra. The small size and completely compartmentalized design of the AI.20 was a natural fit for this role, and it was selected for this new project under the rainbow code "Red Steer". This decision was apparently led by the RRE's liaison with EKCO, Jerry Steer, for whom the system was named. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Interceptor aircraft</span> Fighter aircraft classification; tasked with defensive interception of enemy aircraft

An interceptor aircraft, or simply interceptor, is a type of fighter aircraft designed specifically for the defensive interception role against an attacking enemy aircraft, particularly bombers and reconnaissance aircraft. Aircraft that are capable of being or are employed as both ‘standard’ air superiority fighters and as interceptors are sometimes known as fighter-interceptors. There are two general classes of interceptor: light fighters, designed for high performance over short range; and heavy fighters, which are intended to operate over longer ranges, in contested airspace and adverse meteorological conditions. While the second type was exemplified historically by specialized night fighter and all-weather interceptor designs, the integration of mid-air refueling, satellite navigation, on-board radar and beyond visual range (BVR) missile systems since the 1960s has allowed most frontline fighter designs to fill the roles once reserved for specialised night/all-weather fighters.

<span class="mw-page-title-main">Euroradar CAPTOR</span> Captor by Euroradar as seen on the Eurofighter Typhoon (CAPTOR-M/E, Mechanical/AESA)

The Euroradar Captor is a next-generation mechanical multi-mode pulse Doppler radar designed for the Eurofighter Typhoon. Development of Captor led to the Airborne Multirole Solid State Active Array Radar (AMSAR) project which eventually produced the CAESAR, now known as Captor-E.

<span class="mw-page-title-main">HOTAS</span> Man-machine interface concept for cockpit design

HOTAS, an acronym of hands on throttle-and-stick, is the concept of placing buttons and switches on the throttle lever and flight control stick in an aircraft cockpit. By adopting such an arrangement, pilots are capable of performing all vital functions as well as flying the aircraft without having to remove their hands from the controls.

de Havilland Firestreak Air-to-air missile

The de Havilland Firestreak is a British first-generation, passive infrared homing air-to-air missile. It was developed by de Havilland Propellers in the early 1950s, entering service in 1957. It was the first such weapon to enter active service with the Royal Air Force (RAF) and Fleet Air Arm, equipping the English Electric Lightning, de Havilland Sea Vixen and Gloster Javelin. It was a rear-aspect, fire and forget pursuit weapon, with a field of attack of 20 degrees either side of the target.

<span class="mw-page-title-main">H2S (radar)</span> First airborne, ground scanning radar system WWII

H2S was the first airborne, ground scanning radar system. It was developed for the Royal Air Force's Bomber Command during World War II to identify targets on the ground for night and all-weather bombing. This allowed attacks outside the range of the various radio navigation aids like Gee or Oboe, which were limited to about 350 kilometres (220 mi) of range from various base stations. It was also widely used as a general navigation system, allowing landmarks to be identified at long range.

<span class="mw-page-title-main">Ground-controlled interception</span>

Ground-controlled interception (GCI) is an air defence tactic whereby one or more radar stations or other observational stations are linked to a command communications centre which guides interceptor aircraft to an airborne target. This tactic was pioneered during World War I by the London Air Defence Area organization, which became the Royal Air Force's Dowding system in World War II, the first national-scale system. The Luftwaffe introduced similar systems during the war, but most other combatants did not suffer the same threat of air attack and did not develop complex systems like these until the Cold War era.

<span class="mw-page-title-main">Telecommunications Research Establishment</span>

<span class="mw-page-title-main">Terrain-following radar</span> Radar used for extremely low level flight

Terrain-following radar (TFR) is a military aerospace technology that allows a very-low-flying aircraft to automatically maintain a relatively constant altitude above ground level and therefore make detection by enemy radar more difficult. It is sometimes referred to as ground hugging or terrain hugging flight. The term nap-of-the-earth flight may also apply but is more commonly used in relation to low-flying military helicopters, which typically do not use terrain-following radar.

The Rainbow Codes were a series of code names used to disguise the nature of various British military research projects. They were mainly used by the Ministry of Supply from the end of the Second World War until 1958, when the ministry was broken up and its functions distributed among the forces. The codes were replaced by an alphanumeric code system.

<span class="mw-page-title-main">Operational Requirement F.155</span> British military defense specification

Operational Requirement F.155 was a specification issued by the British Ministry of Supply on 15 January 1955 for an interceptor aircraft to defend the United Kingdom from Soviet high-flying nuclear-armed supersonic bombers.

<span class="mw-page-title-main">EKCO</span>

EKCO was a British electronics company producing radio and television sets from 1924 until 1960. Expanding into plastic production for its own use, Ekco Plastics produced both radio cases and later domestic plastic products; the plastics company became Lin Pac Mouldings Ltd.

<span class="mw-page-title-main">AN/APQ-120</span> Aircraft fire control radar

The AN/APQ-120 was an aircraft fire control radar (FCR) manufactured by Westinghouse for the McDonnell Douglas F-4E Phantom II. AN/APQ-120 has a long line of lineage, with its origin traced all the way back to Aero-13 FCR developed by the same company in the early 1950s. A total of half a dozen FCRs were tested and evaluated on the first 18 F-4s built, but they were soon replaced by later radars produced in great numbers, including AN/APQ-120.

<span class="mw-page-title-main">AI Mark VIII radar</span> Type of air-to-air radar

Radar, Airborne Interception, Mark VIII, or AI Mk. VIII for short, was the first operational microwave-frequency air-to-air radar. It was used by Royal Air Force night fighters from late 1941 until the end of World War II. The basic concept, using a moving parabolic antenna to search for targets and track them accurately, remained in use by most airborne radars well into the 1980s.

<span class="mw-page-title-main">Airborne Interception radar</span>

Airborne Interception radar, or AI for short, is the British term for radar systems used to equip aircraft in air-to-air role. These radars are used primarily by Royal Air Force (RAF) and Fleet Air Arm night fighters and interceptors for locating and tracking other aircraft, although most AI radars could also be used in a number of secondary roles as well. The term was sometimes used generically for similar radars used in other countries.

<span class="mw-page-title-main">AIRPASS</span> British interceptor radar/avionics system

AIRPASS was a British airborne interception radar and fire-control radar system developed by Ferranti. It was the world's first airborne monopulse radar system and fed data to the world's first head-up display. The name is an acronym for "Airborne Interception Radar and Pilot's Attack Sight System". In the Royal Air Force (RAF) it was given the official name Radar, Airborne Interception, Mark 23, normally shortened to AI.23. AIRPASS was used on the English Electric Lightning throughout its lifetime.

Seaspray is series of a British airborne maritime radar systems, initially developed by Ferranti for the Lynx helicopter, built in Edinburgh. It is used primarily as an Air-to-Surface Vessel radar in the anti-submarine and anti missile boat roles. The combination of Lynx and Seaspray has been an export success and operates in numerous armed forces around the world, often along with the related Sea Skua short-range missile.

<span class="mw-page-title-main">AMES Type 85</span> Cold War-era British early warning radar

The AMES Type 85, also known by its rainbow code Blue Yeoman, was an extremely powerful early warning (EW) and fighter direction (GCI) radar used by the Royal Air Force (RAF) as part of the Linesman/Mediator radar network. First proposed in early 1958, it was eleven years before they became operational in late 1968, by which time they were already considered obsolete. The Type 85 remained the RAF's primary air defense radar until it was replaced by Marconi Martello sets in the late-1980s as part of the new IUKADGE network.

<span class="mw-page-title-main">ASV Mark II radar</span> Type of aircraft radar

Radar, Air-to-Surface Vessel, Mark II, or ASV Mk. II for short, was an airborne sea-surface search radar developed by the UK's Air Ministry immediately prior to the start of World War II. It was the first aircraft mounted radar of any sort to be used operationally. It was widely used by aircraft of the RAF Coastal Command, Fleet Air Arm and similar groups in the United States and Canada. A version was also developed for small ships, the Royal Navy's Type 286.

<span class="mw-page-title-main">Red Steer</span> Tail warning radar

Red Steer, also known as ARI 5919 and ARI 5952 depending on the version, was a tail warning radar used on the British V bomber force. Built by EKCO, it was developed from the experimental AI.20 radar for the English Electric Lightning. The Lightning required its radar to be remotely installed in the nose of the aircraft, and this made the set equally suitable for remote mounting in the tail of the bombers.

<span class="mw-page-title-main">SCR-720</span> Type of aircraft radar

The SCR-720 was a World War II Airborne Interception radar designed by the Radiation Laboratory (RadLab) at MIT in the United States. It was used by US Army Air Force night fighters as well as the Royal Air Force (RAF) in a slightly modified version known as Radar, Airborne Interception, Mark X, or AI Mk. X for short.

References

Citations

Bibliography