The redundancy principle in biology [1] [2] [3] [4] [5] [6] [7] [8] [9] expresses the need of many copies of the same entity (cells, molecules, ions) to fulfill a biological function. Examples are numerous: disproportionate numbers of spermatozoa during fertilization compared to one egg, large number of neurotransmitters released during neuronal communication compared to the number of receptors, large numbers of released calcium ions during transient in cells, and many more in molecular and cellular transduction or gene activation and cell signaling. This redundancy is particularly relevant when the sites of activation are physically separated from the initial position of the molecular messengers. The redundancy is often generated for the purpose of resolving the time constraint of fast-activating pathways. It can be expressed in terms of the theory of extreme statistics to determine its laws and quantify how the shortest paths are selected. The main goal is to estimate these large numbers from physical principles and mathematical derivations.
When a large distance separates the source and the target (a small activation site), the redundancy principle explains that this geometrical gap can be compensated by large number. Had nature used less copies than normal, activation would have taken a much longer time, as finding a small target by chance is a rare event and falls into narrow escape problems. [10]
The time for the fastest particles to reach a target in the context of redundancy depends on the numbers and the local geometry of the target. In most of the time, it is the rate of activation. This rate should be used instead of the classical Smoluchowski's rate describing the mean arrival time, but not the fastest. The statistics of the minimal time to activation set kinetic laws in biology, which can be quite different from the ones associated to average times.
The motion of a particle located at position can be described by the Smoluchowski's limit of the Langevin equation: [11] [12]
where is the diffusion coefficient of the particle, is the friction coefficient per unit of mass, the force per unit of mass, and is a Brownian motion. This model is classically used in molecular dynamics simulations.
, which is for example a model of telomere length dynamics. Here , with . [13]
where is a unit vector chosen from a uniform distribution. Upon hitting an obstacle at a boundary point , the velocity changes to where is chosen on the unit sphere in the supporting half space at from a uniform distribution, independently of . This rectilinear with constant velocity is a simplified model of spermatozoon motion in a bounded domain . Other models can be diffusion on graph, active graph motion. [14]
The mathematical analysis of large numbers of molecules, which are obviously redundant in the traditional activation theory, is used to compute the in vivo time scale of stochastic chemical reactions. The computation relies on asymptotics or probabilistic approaches to estimate the mean time of the fastest to reach a small target in various geometries. [15] [16] [17]
With N non-interacting i.i.d. Brownian trajectories (ions) in a bounded domain Ω that bind at a site, the shortest arrival time is by definition
where are the independent arrival times of the N ions in the medium. The survival distribution of arrival time of the fastest is expressed in terms of a single particle, . Here is the survival probability of a single particle prior to binding at the target.This probability is computed from the solution of the diffusion equation in a domain :
where the boundary contains NR binding sites (). The single particle survival probability is
so that where
and .
The probability density function (pdf) of the arrival time is
which gives the MFPT
The probability can be computed using short-time asymptotics of the diffusion equation as shown in the next sections.
The short-time asymptotic of the diffusion equation is based on the ray method approximation. For an semi-interval , the survival pdf is solution of
that is
The survival probability with D=1 is . To compute the MFPT, we expand the complementary error function
which gives,
leading (the main contribution of the integral is near 0) to
This result is reminiscent of using the Gumbel's law. Similarly, escape from the interval [0,a] is computed from the infinite sum
.The conditional survival probability is approximated by [1]
, where the maximum occurs at min[y,a-y] for 0<y<a (the shortest ray from y to the boundary). All other integrals can be computed explicitly, leading to
The arrival times of the fastest among many Brownian motions are expressed in terms of the shortest distance from the source S to the absorbing window A, measured by the distance where d is the associated Euclidean distance. Interestingly, trajectories followed by the fastest are as close as possible from the optimal trajectories. In technical language, the associated trajectories of the fastest among N, concentrate near the optimal trajectory (shortest path) when the number N of particles increases. For a diffusion coefficient D and a window of size a, the expected first arrival times of N identically independent distributed Brownian particles initially positioned at the source S are expressed in the following asymptotic formulas :
These formulas show that the expected arrival time of the fastest particle is in dimension 1 and 2, O(1/\log(N)). They should be used instead of the classical forward rate in models of activation in biochemical reactions. The method to derive formulas is based on short-time asymptotic and the Green's function representation of the Helmholtz equation. Note that other distributions could lead to other decays with respect N.
The optimal paths for the fastest can be found using the Wencell-Freidlin functional in the Large-deviation theory. These paths correspond to the short-time asymptotics of the diffusion equation from a source to a target. In general, the exact solution is hard to find, especially for a space containing various distribution of obstacles.
The Wiener integral representation of the pdf for a pure Brownian motion is obtained for a zero drift and diffusion tensor constant, so that it is given by the probability of a sampled path until it exits at the small window at the random time T
where
in the product and T is the exit time in the narrow absorbing window Finally,
where is the ensemble of shortest paths selected among n Brownian trajectories, starting at point y and exiting between time t and t+dt from the domain . The probability is used to show that the empirical stochastic trajectories of concentrate near the shortest paths starting from y and ending at the small absorbing window , under the condition that . The paths of can be approximated using discrete broken lines among a finite number of points and we denote the associated ensemble by . Bayes' rule leads to where is the probability that a path of exits in m-discrete time steps. A path made of broken lines (random walk with a time step) can be expressed using Wiener path-integral. The probability of a Brownian path x(s) can be expressed in the limit of a path-integral with the functional:
The Survival probability conditioned on starting at y is given by the Wiener representation:
where is the limit Wiener measure: the exterior integral is taken over all end points x and the path integral is over all paths starting from x(0). When we consider n-independent paths (made of points with a time step that exit in m-steps, the probability of such an event is
.Indeed, when there are n paths of m steps, and the fastest one escapes in m-steps, they should all exit in m steps. Using the limit of path integral, we get heuristically the representation
where the integral is taken over all paths starting at y(0) and exiting at time . This formula suggests that when n is large, only the paths that minimize the integrant will contribute. For large n, this formula suggests that paths that will contribute the most are the ones that will minimize the exponent, which allows selecting the paths for which the energy functional is minimal, that is
where the integration is taken over the ensemble of regular paths inside starting at y and exiting in , defined as
This formal argument shows that the random paths associated to the fastest exit time are concentrated near the shortest paths. Indeed, the Euler-Lagrange equations for the extremal problem are the classical geodesics between y and a point in the narrow window .
The formula for the fastest escape can generalize to the case where the absorbing window is located in funnel cusp and the initial particles are distributed outside the cusp. The cusp has a size in the opening and a curvature R. The diffusion coefficient is D. The shortest arrival time, valid for large n is given by Hereand c is a constant that depends on the diameter of the domain. The time taken by the first arrivers is proportional to the reciprocal of the size of the narrow target . This formula is derived for fixed geometry and large n and not in the opposite limit of large n and small epsilon. [18]
How nature sets the disproportionate numbers of particles remain unclear, but can be found using the theory of diffusion. One example is the number of neurotransmitters around 2000 to 3000 released during synaptic transmission, that are set to compensate the low copy number of receptors, so the probability of activation is restored to one. [19] [20]
In natural processes these large numbers should not be considered wasteful, but are necessary for generating the fastest possible response and make possible rare events that otherwise would never happen. This property is universal, ranging from the molecular scale to the population level. [21]
Nature's strategy for optimizing the response time is not necessarily defined by the physics of the motion of an individual particle, but rather by the extreme statistics, that select the shortest paths. In addition, the search for a small activation site selects the particle to arrive first: although these trajectories are rare, they are the ones that set the time scale. We may need to reconsider our estimation toward numbers when punctioning nature in agreement with the redundant principle that quantifies the request to achieve the biological function. [21]
In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.
In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.
The short-time Fourier transform (STFT), is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. In practice, the procedure for computing STFTs is to divide a longer time signal into shorter segments of equal length and then compute the Fourier transform separately on each shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually plots the changing spectra as a function of time, known as a spectrogram or waterfall plot, such as commonly used in software defined radio (SDR) based spectrum displays. Full bandwidth displays covering the whole range of an SDR commonly use fast Fourier transforms (FFTs) with 2^24 points on desktop computers.
The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
In relativity, proper time along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar. The interval is the quantity of interest, since proper time itself is fixed only up to an arbitrary additive constant, namely the setting of the clock at some event along the world line.
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In physics, the Polyakov action is an action of the two-dimensional conformal field theory describing the worldsheet of a string in string theory. It was introduced by Stanley Deser and Bruno Zumino and independently by L. Brink, P. Di Vecchia and P. S. Howe in 1976, and has become associated with Alexander Polyakov after he made use of it in quantizing the string in 1981. The action reads:
In mathematics, a Dirac comb is a periodic function with the formula
In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form
In theory of vibrations, Duhamel's integral is a way of calculating the response of linear systems and structures to arbitrary time-varying external perturbation.
In mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.
The narrow escape problem is a ubiquitous problem in biology, biophysics and cellular biology.
Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.
In statistical mechanics, thermal fluctuations are random deviations of an atomic system from its average state, that occur in a system at equilibrium. All thermal fluctuations become larger and more frequent as the temperature increases, and likewise they decrease as temperature approaches absolute zero.
In mathematics, the Bussgang theorem is a theorem of stochastic analysis. The theorem states that the cross-correlation of a Gaussian signal before and after it has passed through a nonlinear operation are equal up to a constant. It was first published by Julian J. Bussgang in 1952 while he was at the Massachusetts Institute of Technology.
In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.
In structural dynamics, a moving load changes the point at which the load is applied over time. Examples include a vehicle that travels across a bridge and a train moving along a track.
The spectrum of a chirp pulse describes its characteristics in terms of its frequency components. This frequency-domain representation is an alternative to the more familiar time-domain waveform, and the two versions are mathematically related by the Fourier transform. The spectrum is of particular interest when pulses are subject to signal processing. For example, when a chirp pulse is compressed by its matched filter, the resulting waveform contains not only a main narrow pulse but, also, a variety of unwanted artifacts many of which are directly attributable to features in the chirp's spectral characteristics.
Multidimensional seismic data processing forms a major component of seismic profiling, a technique used in geophysical exploration. The technique itself has various applications, including mapping ocean floors, determining the structure of sediments, mapping subsurface currents and hydrocarbon exploration. Since geophysical data obtained in such techniques is a function of both space and time, multidimensional signal processing techniques may be better suited for processing such data.
{{cite book}}
: |last=
has generic name (help)CS1 maint: multiple names: authors list (link){{cite journal}}
: Cite journal requires |journal=
(help)