In mathematics, in the area of wavelet analysis, a refinable function is a function which fulfils some kind of self-similarity. A function is called refinable with respect to the mask if
This condition is called refinement equation, dilation equation or two-scale equation.
Using the convolution (denoted by a star, *) of a function with a discrete mask and the dilation operator one can write more concisely:
It means that one obtains the function, again, if you convolve the function with a discrete mask and then scale it back. There is a similarity to iterated function systems and de Rham curves.
The operator is linear. A refinable function is an eigenfunction of that operator. Its absolute value is not uniquely defined. That is, if is a refinable function, then for every the function is refinable, too.
These functions play a fundamental role in wavelet theory as scaling functions.
A refinable function is defined only implicitly. It may also be that there are several functions which are refinable with respect to the same mask. If shall have finite support and the function values at integer arguments are wanted, then the two scale equation becomes a system of simultaneous linear equations.
Let be the minimum index and be the maximum index of non-zero elements of , then one obtains
Using the discretization operator, call it here, and the transfer matrix of , named , this can be written concisely as
This is again a fixed-point equation. But this one can now be considered as an eigenvector-eigenvalue problem. That is, a finitely supported refinable function exists only (but not necessarily), if has the eigenvalue 1.
From the values at integral points you can derive the values at dyadic points, i.e. points of the form , with and .
The star denotes the convolution of a discrete filter with a function. With this step you can compute the values at points of the form . By replacing iteratedly by you get the values at all finer scales.
If is refinable with respect to , and is refinable with respect to , then is refinable with respect to .
If is refinable with respect to , and the derivative exists, then is refinable with respect to . This can be interpreted as a special case of the convolution property, where one of the convolution operands is a derivative of the Dirac impulse.
If is refinable with respect to , and there is an antiderivative with , then the antiderivative is refinable with respect to mask where the constant must fulfill .
If has bounded support, then we can interpret integration as convolution with the Heaviside function and apply the convolution law.
Computing the scalar products of two refinable functions and their translates can be broken down to the two above properties. Let be the translation operator. It holds where is the adjoint of with respect to convolution, i.e., is the flipped and complex conjugated version of , i.e., .
Because of the above property, is refinable with respect to , and its values at integral arguments can be computed as eigenvectors of the transfer matrix. This idea can be easily generalized to integrals of products of more than two refinable functions. [1]
A refinable function usually has a fractal shape. The design of continuous or smooth refinable functions is not obvious. Before dealing with forcing smoothness it is necessary to measure smoothness of refinable functions. Using the Villemoes machine [2] one can compute the smoothness of refinable functions in terms of Sobolev exponents.
In a first step the refinement mask is divided into a filter , which is a power of the smoothness factor (this is a binomial mask) and a rest . Roughly spoken, the binomial mask makes smoothness and represents a fractal component, which reduces smoothness again. Now the Sobolev exponent is roughly the order of minus logarithm of the spectral radius of .
The concept of refinable functions can be generalized to functions of more than one variable, that is functions from . The most simple generalization is about tensor products. If and are refinable with respect to and , respectively, then is refinable with respect to .
The scheme can be generalized even more to different scaling factors with respect to different dimensions or even to mixing data between dimensions. [3] Instead of scaling by scalar factor like 2 the signal the coordinates are transformed by a matrix of integers. In order to let the scheme work, the absolute values of all eigenvalues of must be larger than one. (Maybe it also suffices that .)
Formally the two-scale equation does not change very much:
Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.
The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing.
In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the first known wavelet basis and is extensively used as a teaching example.
In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.
In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density.
In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic, cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.
The fast wavelet transform is a mathematical algorithm designed to turn a waveform or signal in the time domain into a sequence of coefficients based on an orthogonal basis of small finite waves, or wavelets. The transform can be easily extended to multidimensional signals, such as images, where the time domain is replaced with the space domain. This algorithm was introduced in 1989 by Stéphane Mallat.
The following are important identities involving derivatives and integrals in vector calculus.
An orthogonal wavelet is a wavelet whose associated wavelet transform is orthogonal. That is, the inverse wavelet transform is the adjoint of the wavelet transform. If this condition is weakened one may end up with biorthogonal wavelets.
In mathematics, especially functional analysis, a Fréchet algebra, named after Maurice René Fréchet, is an associative algebra over the real or complex numbers that at the same time is also a Fréchet space. The multiplication operation for is required to be jointly continuous. If is an increasing family of seminorms for the topology of , the joint continuity of multiplication is equivalent to there being a constant and integer for each such that for all . Fréchet algebras are also called B0-algebras.
The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.
In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.
In mathematics, the Neumann–Poincaré operator or Poincaré–Neumann operator, named after Carl Neumann and Henri Poincaré, is a non-self-adjoint compact operator introduced by Poincaré to solve boundary value problems for the Laplacian on bounded domains in Euclidean space. Within the language of potential theory it reduces the partial differential equation to an integral equation on the boundary to which the theory of Fredholm operators can be applied. The theory is particularly simple in two dimensions—the case treated in detail in this article—where it is related to complex function theory, the conjugate Beurling transform or complex Hilbert transform and the Fredholm eigenvalues of bounded planar domains.
In applied mathematical analysis, shearlets are a multiscale framework which allows efficient encoding of anisotropic features in multivariate problem classes. Originally, shearlets were introduced in 2006 for the analysis and sparse approximation of functions . They are a natural extension of wavelets, to accommodate the fact that multivariate functions are typically governed by anisotropic features such as edges in images, since wavelets, as isotropic objects, are not capable of capturing such phenomena.