Regulatory macrophages (Mregs) represent a subset of anti-inflammatory macrophages. In general, macrophages are a very dynamic and plastic cell type and can be divided into two main groups: classically activated macrophages (M1) and alternatively activated macrophages (M2).[1] M2 group can further be divided into sub-groups M2a, M2b, M2c, and M2d.[2] Typically the M2 cells have anti-inflammatory and regulatory properties and produce many different anti-inflammatory cytokines such as IL-4, IL-33, IL-10, IL-1RA, and TGF-β.[3][4] M2 cells can also secrete angiogenic and chemotactic factors.[5] These cells can be distinguished based on the different expression levels of various surface proteins and the secretion of different effector molecules.[4]
Many cell types including monocytes, M1, and M2 can in a specific microenvironment differentiate to Mregs.[7] Induction of Mregs is strongly linked with the interaction of Fc receptors located on the surface of Mregs with Fc fragments of antibodies.[14] It has been shown that anti-TNF monoclonal antibodies interacting with Fcγ receptor of Mregs induce differentiation of Mregs through activation of STAT3 signaling pathway.[15][16] Some pathogens can promote the transformation of cells into Mregs as an immune evasion mechanism.[7][17] Two signals are needed for Mregs inducement. The first signal is stimulation by M-CSF, GM-CSF, PGE2, adenosine, glucocorticoid, or apoptotic cells.[9][18] The second signal can be stimulation with cytokines or toll-like receptor ligands. The first signal promotes the differentiation of monocytes to macrophages and the second signal promotes immunosuppressive functions.[8] In vitro, M-CSF, IFNγ, and LPS are used for the inducement of Mregs.[7]
Surprisingly, Mregs resemble classically activated macrophages more than alternatively activated macrophages, due to higher biochemical similarity.[19] The difference between M1 macrophages and Mregs is, inter alia, that Mregs secrete high levels of IL-10 and simultaneously low levels of IL-12. Out of all macrophages, Mregs show the highest expression of MHC II molecules and co-stimulatory molecules (CD80/CD86), which differentiates them from the alternatively activated macrophages, which show a very low expression of these molecules. Mregs also differ from alternatively activated macrophages by producing high levels of nitric oxide and low arginase activity.[7][16][19] Lastly, they differ in the expression of FIIZ1 (Resistin-like molecule alpha1) and YM1 which are differentiation markers present on alternatively activated macrophages.[4] Mregs are recognized by the expression of PD-L1, CD206, CD80/CD86, HLA-DR, and DHRS9 (dehydrogenase/reductase 9).[4][20]DHRS9 has been recognized as a stable marker for Mregs in humans.[20]
Biochemical and functional characterization of Mregs
The physiological role of Mregs is to dampen the immune response and immunopathology. Unlike classically activated macrophages, Mregs produce low levels of IL-12, which is important because IL-12 induces differentiation of naïve helper T cells to Th1 cells which produce high levels of IFNγ. Mregs do not contribute to the production of extracellular matrix because they express low levels of arginase.[12][4]
Mregs show up-regulation of IL-10, TGFβ, PGE2, iNOS, IDO, and down-regulation of IL-1β, IL-6, IL-12, and TNF-α.[21] By secreting TGF-β they help with the induction of Tregs and by producing IL-10 they contribute to the induction of tolerance and regulatory cell types. Mregs can directly inhibit the proliferation of activated T cells. It has been shown that Mregs co-cultured with T cells have a negative effect on the T-cellular ability to secrete IL-2 and IFN-γ. [22] Mregs can also inhibit the arginase activity of alternatively activated macrophages, the proliferation of fibroblasts, and can promote angiogenesis.[23] The use of Mregs is widely studied as a potential cell-based immunosuppressive therapy after organ transplantation. Mregs could potentially solve the problems (susceptibility to infectious diseases and cancer diseases) associated with the current post-transplant therapy. Since Mregs are still producing nitric oxide they may be more suitable than current treatments, when appropriately stimulated.[22]
References
↑ Saha S, Shalova IN, Biswas SK (November 2017). "Metabolic regulation of macrophage phenotype and function". Immunological Reviews. 280 (1): 102–111. doi:10.1111/imr.12603. PMID29027220. S2CID36334334.
↑ Giacomelli R, Ruscitti P, Alvaro S, Ciccia F, Liakouli V, Di Benedetto P, etal. (August 2016). "IL-1β at the crossroad between rheumatoid arthritis and type 2 diabetes: may we kill two birds with one stone?". Expert Review of Clinical Immunology. 12 (8): 849–55. doi:10.1586/1744666X.2016.1168293. hdl:10447/207730. PMID26999417. S2CID23523228.
1 2 3 4 5 6 Di Benedetto P, Ruscitti P, Vadasz Z, Toubi E, Giacomelli R (October 2019). "Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases". Autoimmunity Reviews. 18 (10): 102369. doi:10.1016/j.autrev.2019.102369. PMID31404701. S2CID199548742.
1 2 Wong SC, Puaux AL, Chittezhath M, Shalova I, Kajiji TS, Wang X, etal. (August 2010). "Macrophage polarization to a unique phenotype driven by B cells". European Journal of Immunology. 40 (8): 2296–307. doi:10.1002/eji.200940288. PMID20468007.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.